OPTIMASI DAN PEMEKATAN LIPASE Bacillus halodurans CM1

Arina Aisyah, Wibowo Mangunwardoyo, Trismilah Trismilah, Dadang Suhendar

Abstract


Abstrak

Lipase diketahui memiliki peranan penting dalam bidang industri. Produksi lipase dapat dihasilkan oleh kapang, khamir, dan bakteri. Penelitian bertujuan untuk meningkatkan aktivitas lipase yang dihasilkan oleh Bacillus halodurans CM1. Aktivitas lipase dapat ditingkatkan dengan optimasi komposisi media, mutasi bakteri dengan radiasi gamma dan N-methyl-N’-nitro-N-nitrosoguanidine (NTG). Enzim yang dihasilkan dipekatkan dengan metode stirred-cell ultrafiltration (UF)-ammonium sulfat dan UF-Polyethylene glycol (PEG). Uji aktivitas dilakukan pada tujuh media yang berbeda untuk mendapatkan media produksi. Delapan variabel komposisi media dioptimasi dengan rancangan Plackett-Burman. Bakteri dimutasi dengan radiasi gamma dosis 0,1–0,4 kGy dan NTG 0,05–0,15 mg/mL dengan waktu inkubasi 1–3 jam. Hasil penelitian menunjukkan bahwa media produksi yang digunakan berdasarkan optimasi media dan komposisi media Plackett-Burman adalah media dasar Bora & Bora yang mengandung 0,5% palm oil (PO) dan 0,09% CaCl2. Aktivitas lipase optimal diproduksi oleh bakteri hasil mutasi dengan NTG 0,1 mg/mL yang diinkubasi selama 3 jam. Pemekatan enzim UF-ammonium sulfat dan UF-PEG mampu meningkatkan aktivitas enzim lipase sebesar 18,44%.

 

 

Abstract

Lipase is known to have an important role in the industrial field. Lipase can be produced by molds, yeasts, and bacteria. The research aimed to increase the activity of lipase produced by Bacillus halodurans CM1. Lipase activity can be improved by optimization of the composition of the media, the mutation of bacteria with gamma radiation and N-methyl-N'-nitro-N-nitrosoguanidine (NTG). The enzyme was concentrated by stirred-cell ultrafiltration method (UF)-ammonium sulfate and UF-Polyethylene glycol (PEG). The activity test was performed on seven different media to get production media. The eight variables of the media composition were optimized by Plackett-Burman design. The bacteria were subject to mutation by using 0.10.4 kGy dose of gamma radiation and 0.050.15 mg/mL NTG with incubation time for 13 hours. The results showed that the production media used based on optimization and composition of Plackett-Burman media was Bora Bora medium that containing 0.5% palm oil (PO) and 0.09% CaCl2. Optimum lipase activity was produced by the bacterium that mutated with 0.1 mg/mL NTG, incubated for 3 hours. The concentrated by UF-ammonium sulfate and UF-PEG could increase the lipase activity by 18.44%.

Keywords


Bacillus halodurans; lipase; mutasi; optimasi; pemekatan enzim; Bacillus halodurans; enzyme concentration; lipase; mutation; optimization

Full Text:

PDF

References


Abdel-Fattah, Y. R., Soliman, N. A., Gaballa, A. A., Sabry, S. A., & El-Diwany, A. I. (2002). Lipase production from a novel thermophilic Bacillus sp.: application of Plackett-Burman design for evaluating culture conditions affecting enzyme formation. Acta Microbiologica Polonica, 51(4), 353-366.

Anbu, P., Gopinath, S. C. B., Cihan, A. C., & Chaulagain, B. P. (2013). Microbial enzymes and their applications in industries and madicine. BioMed Research International, 2013, 1-2.

Andreoni, V., Bernasconi, S., & Bestetti, G. (1995). Biotransformation of ferulic acid and related compound by mutant strains of Pseudomonas fluorescens. Applied Microbial Biotechnology, 42, 830-835.

Bora, L. & Bora, M. (2012). Optimization of extracellular thermophilic highly alkaline lipase from thermophilic Bacillus sp. isolated from Hot Spring Arunachal Pradesh, India. Brazilian Journal of Microbiology, 30-42.

Borkar, P. S., Bodade, R. G., Rao, S. R., & Khobragde, C. N. (2009). Purification and characterization of extracellular lipase from a new strain-Pseudomonas aeruginosa SRT 9. Brazilian Journal of Microbiology, 40, 358-366.

Chauhan, M., & Garlapati, V. K. (2013). Production and characterization of a halo-, solvent-, thermo-tolerant alkaline lipase by Staphylococcus arlettae JPBW-1, isolated from rock salt mine. Applied Biochemistry and Biotechnology, 171, 1429-1443.

Damaso, M. C. T., Passianoto, M. A., de Freitas, S. C., Freire, D. M. G., Lago, R. C. A., & Couri, S. (2008). Utilization of agroindustrial residues for lipase production by solid-state fermentation. Brazilian Journal of Microbiology, 39, 676-681.

Devi, A. S., Devi, K. C., & Rajendiran, R. (2012). Optimization of lipase production using Bacillus subtilis by response surface methodology. International Journal of Biological, Veterinary, Agricultural and Food Engineering, 6(9), 164-169.

Gulati, R., Isar, J., Kumar, V., Prasad, A. K., Parmar, V. S., & Saxena, R. K. (2005). Production of novel alkaline lipase from Fusarium globosum using neem oil and its applications. Pure and Applied Chemistry, 77, 251-262.

Iftikhar, T., Niaz, M., Hussain, Y., Abbas, S. Q., Ashraf, I., & Zia, M. A. (2010). Improvement of selected strains through gamma irradiation for enhanced lipolytic potential. Pakistan Journal of Botany, 42(4), 2257-2267.

Kanwar, L., Gogoi, B. K., & Goswami, P. (2002). Production of Pseudomonas lipase in n-Alkane substrate and its isolation using ammonium sulphate precipitation technique. Bioresouce Technology, 84, 207-211.

Li Xiao-Lu, Zhang Wen-Hui, Wang Ying-Dong, Dai Yu-Jie, Zhang Hui-Tu, Wang Yue, Wang Hai-Kuan, & Lu Fu-Ping. (2014). A high-detergent-performance, cold-adapted lipase from Pseudomonas stutzeri PS59 suitable for detergent formulation. Journal of Molecular Catalysis B: Enzymatic, 102, 16-24.

Liu Xiangyang, Ren Biao, Gao Hong, Liu Mei, Dai Huanqin, Song Fuhang, Yu Zhenyan, Wang Shujin, Hu Jiangchun, Kokare, C. R., & Zhang Lixin. (2012). Optimization for the production of surfactin with a new synergistic antifungal activity. Plos One, 7(5), 1-9

Mala, J. G. S. & Takeuchi, S. (2008). Understanding structural feature of mikrobial lipases-An Overview. Analytical Chemistry Insights, 3, 9-19.

Mamo, G., Rajni, H. K., & Mattiason, B. (2006). A thermostable alkaline active endo-β1-4 xylanase from Bacillus halodurans S7: purification and characterization. Enzyme and Microbial Technology, 39(7), 1492-1498.

Nurhasanah & Herasari, D. (2008). Pemurnian enzim lipase dari bakteri lokal dan aplikasinya dalam reaksi esterifikasi (Prosiding). Seminar Nasional Sains dan Teknologi-II, 17-18 November. Universitas Lampung, Bandar Lampung.

Rabbani, M., Shafiee, F., Shayegh, Z., Sadeghi, H. M. M., Shariat, Z. S., Etemadifar, Z., & Moazen, F. (2015). Isolation and characterization of a new thermoalkalophilic lipase from soil bacteria. Iranian Journal of Pharmaceutical Research, 14(3), 901-906.

Sangeetha, R., Geetha, A., & Arulpandi, I. (2010). Concomitant production of protease and lipase by Bacillus licheniformis VSG1: production, purification and characterization. Brazilian Journal of Microbiology, 41, 179-185.

Shah, K. R. & Bhatt, S. A. (2012). Purification and characterization of lipase from Bacillus subtilis Pa2. Journal of Biochemical and Technology, 3(3), 292-295.

Shahbazi, S., Ispareh, K., Karimi, M., Askari, H., & Ebrahimi, M. A. (2014). Gamma and UV radiation induced mutagenesis in Trichoderma reesei to enhance cellulases anzyme activity. International Journal of Farming and Allied Science, 3(5), 543-554.

Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19, 627-662.

Sharma, V. & Singh, P. K. (2012). Strain improvement of Bacillus coagulans and Geobacillus strearothermophilus for enhanced thermostable cellulase production and the effect of different metal ions on cellulase activity. International Journal of Engineering Science and Technology, 4(11), 4704-4709.

Tambunan, U. S. F., Randy, A., & Parikesit, A. A. (2014). Design of Candida antartica lipase B thermostability improvement by introducing extra disulfide bond into the enzyme. OnLine Journal of Biological Sciences, 14 (2), 108-118.

Thomas, A., Manoj, M. K., Valsa, A., Mohan, S., & Manjula, R. (2003). Optimization of growth condition for the production of extra cellular lipase by Bacillus mycoides. Indian Jounal of Microbiology, 43, 67-69.

Ulfah, M., Helianti, I., Wahyuntari, B., & Nurhayati, N. (2011). Characterization of new thermoalkalophilic xylanase-producing bacterial strain isolated from Cimanggu Hots Spring, West Java, Indonesia. Microbiology Indonesia, 5(3), 139-143.

Vu, V. H., Pham, T. A., & Kim, K. (2009). Fungal strain improvement for cellulase production using repeated and sequential mutagenesis. Mycobiology, 37(4), 267-271.

Vu, V. H., Pham, T. A., & Kim, K. (2011). Improvement of fungal cellulase production by mutation and optimization of solid state fermentation. Mycobiology, 39(1), 20-25.

Wibisana, A., Sumaryono, W., Sudiro, T. M., & Sudarmono, P. P. (2015). Optimization of surfactin production by Bacillus amyloliquefaciens MD4-12 using response surface methodology. Microbiology Indonesia, 9(3), 120-128.

Wingfield, P. T. (2001). Protein precipitation using ammonium sulphate. Current Protocols in Protein Science, 84, A.3F 1-9.

Xu, H., Jia, S., & Liu, J. (2011). Development of mutant strain of Bacillus subtilis showing enhanced production of acetoin. African Journal of Biotechnology, 10(5), 779-788.




DOI: https://doi.org/10.15408/kauniyah.v10i2.4908 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120