Daya Hambat Perak Nitrat (Agno3) pada Perkecambahan Biji Kacang Hijau (Vigna radiata)
Abstract
Abstrak
Logam berat banyak digunakan dalam kehidupan manusia, di antaranya Hg, Pb, Cr, Zn, dan Ag. Di antara logam tersebut, logam perak (Ag) banyak digunakan oleh masyarakat untuk kegiatan sehari-hari, seperti dalam fotografi, untuk pembuatan cermin perak, dan sebagai reagen dalam analisis. Logam perak dapat diperoleh dari senyawa AgNO3. Keberadaan logam perak pada tanaman dapat menghambat proses perkecambahan pada tanaman kacang hijau (Vigna radiata), yang ditandai dengan penghambatan pemanjangan sel pada akar. Tujuan penelitian ini adalah untuk mengetahui pengaruh daya hambat terhadap pertumbuhan kecambah kacang hijau dan mengetahui konsentrasi hambatan (Inhibitory Concentration) dari perak nitrat (AgNO3). Berdasarkan hasil penelitian diketahui bahwa terdapat penghambatan pada pembentukan akar dengan rata-rata penghambatan lebih dari 50% pada konsentrasi 462,27 ppm. Hal ditunjukkan pada panjang akar yang lebih pendek seiring dengan tingginya konsentrasi AgNO3. Hal tersebut dapat disimpulkan bahwa konsentrasi AgNO3 berpengaruh pada perkecambahan biji kacang hijau yang ditandai dengan terhambatnya pemanjangan panjang akar kacang hijau.
Abstract
Heavy metals are widely used in human life, including Hg, Pb, Cr, Zn, and Ag. Among these metals, silver is widely used for human daily activities, such as in photography, for the manufacture of silver mirror, and as reagents in many analysis. Silver metal can be obtained from AgNO3 compounds. The presence of silver metal in a plant may inhibit the germination process in the green bean plant (Vigna radiata) which is characterized by inhibition of cell lengthening in the root. The aims of this research are to investigate the influence of the inhibitory power to green bean growth and the inhibitory concentration of the silver nitrate (AgNO3). The result showed that there was inhibition that occurred in the root formation by more than 50% of average inhibition at the concentration of 462.27 ppm. It was shown that the root was shorter in length along with the high concentration of AgNO3. From that fenomena, it can be assumed that the concentration of AgNO3 influenced the germination of green bean seeds that were characterized by the inhibition on the lengthening of their roots.
Keywords
Full Text:
PDFReferences
REFERENSI
Alves, C. M., Ferreira, C. M. H., Soares, E. V., & Soares, H. M. V. M. (2017). A multi-metal risk assessment strategy for natural freshwater ecosystems based on the additive inhibitory free metal ion concentration index. Environmental Pollution, 223, 517–523. https://doi.org /10.1016/j.envpol.2017.01.053
Atman. (2007). Teknologi Budidaya Kacang Hijau (Vigna radiata L.) Di Lahan Sawah. Jurnal Ilmiah Tambua, 6(1), 89–95.
Bewley, J. D. (1997). Seed Germination and Dormancy. The Plant Cell Online, 9(7), 1055–1066. https://doi.org/10.1105/tpc.9 .7.1055
Gusev, A. A., Kudrinsky, A. A., Zakharova, O. V., Klimov, A. I., Zherebin, P. M., Lisichkin, G. V., … Krutyakov, Y. A. (2016). Versatile synthesis of PHMB-stabilized silver nanoparticles and their significant stimulating effect on fodder beet (Beta vulgaris L.). Materials Science and Engineering C, 62, 152–159.https://doi.org/10.1016/j.msec.2016.01.040
Krishnaraj, C., Jagan, E. G., Ramachandran, R., Abirami, S. M., Mohan, N., & Kalaichelvan, P. T. (2012). Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochemistry, 47(4), 651–658. https://doi.org/10.1016/j.procbio.2012.01.006
Kumari, M., Mukherjee, A., & Chandrasekaran, N. (2009). Genotoxicity of silver nanoparticles in Allium cepa. Science of the Total Environment, 407(19), 5243–5246. https://doi.org/10. 1016/j.scitotenv.2009.06.024
Laxman, V., Larios, A. D., Cledón, M., Kaur, S., Verma, M., & Surampalli, R. Y. (2016). Science of the Total Environment Behavior and characteriza-tion of titanium dioxide and silver nanoparticles in soils. Science of the Total Environment, 563–564, 933–943. https://doi.org/10.1016/j.scitotenv.2015.11.090
Mazumdar, H., & Ahmed, G. U. (2011a). Phytotoxicity effect of silver nanoparticles on Oryza sativa. International Journal of ChemTech Research, 3(3), 1494–1500.
Mazumdar, H., & Ahmed, G. U. (2011b). Synthesis of Silver Nanoparticles and Its Adverse Effect on Seed Germinations in Oryza sativa, Vigna radiata and Brassica campestris . International Journal of Advanced Biotechnology and Research, 2(4), 404–413.
Nair, P. M. G., & Chung, I. M. (2014). Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere, 112, 105–113. https://doi.org/10.1016/j.chemosphere.2014.03.056
Navarro, E., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Box, P. O., … Behra, R. (2008). Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science & Technology, 42(23),8959–64. https://doi.org/10.1021/ es801785m
Ouma, J. P., Young, M. M., & Reichert, N. A. (2004). Optimization of in vitro regeneration of multiple shoots from hypocotyl sections of cotton (Gossypium hirsutum L.). African Journal of Biotechnology, 3(March), 169–173.
Prasad, T., Adam, S., Rao, P., Reddy, B., & Krishna, T. (2016). Size dependent effects of antifungal phytogenic silver nanoparticles on germination, growth and biochemical parameters of rice (Oryza sativa L), maize (Zea mays L). IET Nanobiotechnology, 1–9. https://doi.org/10.1049/iet-nbt.2015.0122
Ratnasari, S. (2010). Pengaruh penambahan silver nitrat (AgNO3) dalam media murashige skoog (MS) terhadap daya regenerasi kotiledon dua genotipe jarak pagar (Jatropha curcas L .). Universitas Negeri Malang, Malang.
Ravindran, A., Prathna, T. C., Verma, V. K., Chandrasekaran, N., & Mukherjee, A. (2012). Bovine serum albumin mediated decrease in silver nanoparticle phytotoxicity: root elongation and seed germination assay. Toxicological and Environmental Chemistry, 94(1), 91–98. https://doi.org/10.1080/02772248.2011.617034
Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., & Jackson, R. B. (2010). Campbell Biology (9th ed.). Redword City England: Benjamin Cummings Publishing Company Inc.
Rizwan, M., Ali, S., Qayyum, M. F., Ok, Y. S., Adrees, M., Ibrahim, M., … Abbas, F. (2017). Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. Journal of Hazardous Materials, 322, 2–16. https://doi.org/10. 1016/j.jhazmat.2016.05.061
Sebaugh, J. L. (2011). Guidelines for accurate EC50/IC50 estimation. Pharmaceutical Statistics, 10(2), 128–134. https://doi.org/10.1002/pst.426
Sekarwati, N., Murachman, B., & Sunarto. (2015). Dampak logam berat Cu (Tembaga) dan Ag (Perak) pada limbah cair industri perak terhadap kualitas air sumur dan kesehatan masyarakat serta upaya pengendaliannya di Kota Gede Yogyakarta. EKOSAINS, 7(1), 64–76.
Sianipar, B. S. (2011). Pra Rancangan Pabrik Pembuatan Ultra Pure Perak Nitrat dari Perak Mentah dan Asam Nitrat. Universitas Sumatera Utara Medan.
Steinbrecher, T., & Leubner-Metzger, G. (2017). The biomechanics of seed germination. Journal of Experimental Botany, 68(4), 765–783. https://doi.org/10.1093/jxb/erw428
Vittori Antisari, L., Carbone, S., Gatti, A., Vianello, G., & Nannipieri, P. (2015). Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environmental Science and Pollution Research, 22(3), 1841–1853. https://doi.org/10.1007/s113 56-014-3509-0
Yasur, J., & Rani, P. U. (2013). Environmental effects of nanosilver: Impact on castor seed germination, seedling growth, and plant physiology. Environmental Science and Pollution Research, 20(12), 8636–8648. https://doi.org/10.1007/s11356-013-1798-3
DOI: https://doi.org/10.15408/kauniyah.v10i2.4869 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
This work is licensed under a CC-BY- SA.
Indexed By:
  Â