Potential Combination of Cermai (Phyllanthus acidus) and Mulberry (Morus alba) Fruit Extract as a Candidate For Tyrosinase Inhibitor
Abstract
Melanin, a pigment derived from UV radiation, is crucial in preventing skin damage and can cause aesthetic and dermatological problems such as hyperpigmentation or hypopigmentation. Melanogenesis is a complex process involving enzymes and cytokines, with UV being a primary contributor. Tyrosinase is a key enzyme in melanin synthesis. This study aims to test the potential of combining cermai fruit extract (CE) and mulberry fruit (ME) as a tyrosinase inhibitor. The tests included antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, total phenolic content using the Folin Ciocalteu method, flavonoid content using the AlCl3 colorimetric method, and sun protection factor (SPF) value using UV-Vis spectrophotometric method. The results showed that the highest total phenolic content was observed in (CE), followed by the combination of ME: CE in the ratio of 1:3, 1:1, 3:1, and then ME. The same pattern was seen in the flavonoid content assay results. The antioxidant activity, as indicated by the IC50 values, followed the following order CE 418.30%; ME: CE (1:3) 400.49%; ME: CE (1:1) 367.73%; ME: CE (3:1) 358.04%; and ME 344.43%. The highest SPF value was observed in ME. It can be concluded that this study shows that the combination of CE and ME extracts has potential as a tyrosinase inhibitor and skin protective agent from hyperpigmentation due to UV exposure.
Keywords
Full Text:
PDFReferences
‘Aini, D. Q., Sjakoer, N. A. A., & Mubarakati, N. J. (2023). Antioxidant assay of endophytic fungi extract from mango mistletoe (Dendrophthoe pentandra (L.) Miq) leaves. JSMARTech: Journal of Smart Bioprospecting and Technology, 4(1), 09-13. doi: 10.21776/ub.jsmartech.2023.004.01.09.
Ali, A., Ashraf, Z., Kumar, N., Rafiq, M., Jabeen, F., Park, J. H., … Attri, P. (2016). Influence of plasma-activated compounds on melanogenesis and tyrosinase activity. Scientific Reports, 6(1), 21779. doi: 10.1038/srep21779.
Andrianto, D., Widianti, W., & Bintang, M. (2017). Antioxidant and cytotoxic activity of Phyllanthus acidus fruit extracts. IOP Conference Series: Earth and Environmental Science, 58, 012022. doi: 10.1088/1755-1315/58/1/012022.
Arfan, M., Khan, R., Rybarczyk, A., & Amarowicz, R. (2012). Antioxidant activity of mulberry fruit extracts. International Journal of Molecular Sciences, 13, 2472-2480. doi: 10.3390/ijms13022472.
Böhm, M. (2020). Disorders of melanin pigmentation. In G. Plewig, L. French, T. Ruzicka, R. Kaufmann, & M. Hertl (Eds.), Braun-Falco´s dermatology (pp. 1-35). Springer.
Bonesi, M., Leporini, M., Tenuta, M., & Tundis, R. (2019). The role of anthocyanins in drug discovery: Recent developments. Current Drug Discovery Technologies, 16. doi: 10.2174/1570163816666190125152931.
Chamali, S., Bendaoud, H., Bouajila, J., Camy, S., Saadaoui, E., Condoret, J.-S., & Romdhane, M. (2023). Optimization of accelerated solvent extraction of bioactive compounds from Eucalyptus intertexta using response surface methodology and evaluation of its phenolic composition and biological activities. Journal of Applied Research on Medicinal and Aromatic Plants, 35, 100464. doi: 10.1016/j.jarmap.2023.100464.
Chawansuntati, K., Hongjaisee, S., Sirita, K., Kingkaew, K., Rattanathammethee, K., Kumrapich, B., … Lumjuan, N. (2024). Effects of quercetin and extracts from Phyllanthus emblica, Morus alba, and Ginkgo biloba on platelet recovery in a rat model of chemotherapy-induced thrombocytopenia. Heliyon, 10(2). doi: 10.1016/j.heliyon.2024.e25013.
El-Nashar, H. A. S., El-Din, M. I. G., Hritcu, L., & Eldahshan, O. A. (2021). Insights on the inhibitory power of flavonoids on tyrosinase activity: A survey from 2016 to 2021. Molecules, 26(24), 7546. doi: 10.3390/molecules26247546.
Ghazi, S. (2022). Do the polyphenolic compounds from natural products can protect the skin from ultraviolet rays? Results in Chemistry, 4, 100428. doi: 10.1016/j.rechem.2022.100428.
Ghosh, R., Barua, P., Sikder, O., Saha, S., Mojumder, S., & Sikdar, D. (2021). Comparison of phenolic content and antioxidant activity of two common fruits of Bangladesh in solvents of varying polarities. Food Research, 5(6), 187-196. doi: 10.26656/fr.2017.5(6).253.
Hassan, F., Arshad, M., Li, M., Rehman, M., Loor, J., & Huang, J. (2020). The potential of mulberry leaf biomass and its flavonoids to improve production and health in ruminants: Mechanistic insights and prospects. Animals, 10. doi: 10.3390/ani10112076.
Hassanpour, S. H., & Doroudi, A. (2023). Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. Avicenna Journal of Phytomedicine, 13(4), 354-376. doi: 10.22038/AJP.2023.21774.
He, H., Li, A., Li, S., Tang, J., Li, L., & Xiong, L. (2021). Natural components in sunscreens: Topical formulations with a sun protection factor (SPF). Biomedicine & Pharmacotherapy, 134, 111161. doi: 10.1016/j.biopha.2020.111161.
Heckmann, M., Stadlbauer, V., Drotarova, I., Gramatte, T., Feichtinger, M., Arnaut, V., ... Weghuber, J. (2024). Identification of oxidative-stress-reducing plant extracts from a novel extract library-comparative analysis of cell-free and cell-based in vitro assays to quantitate antioxidant activity. Antioxidants, 13(3), 297. doi: 10.3390/antiox13030297.
Hidayatunnikmah, N., Latifah, A., & Rosyida, D. A. C. (2023). Anthocyanins in mulberry leaves (Morus rubra L.) ethanol extract as the inhibitor for the growth of Candida albicans. EMBRIO: Jurnal Kebidanan, 15(1), 1. doi: 10.36456/embrio.v15i1.6346.
Karkoszka, M., Rok, J., & Wrześniok, D. (2024). Melanin biopolymers in pharmacology and medicine-skin pigmentation disorders, implications for drug action, adverse effects and therapy. Pharmaceuticals, 17(4), 521. doi: 10.3390/ph17040521.
Kobus-Cisowska, J., Szczepaniak, O., Szymanowska-Powałowska, D., Piechocka, J., Szulc, P., & Dziedziński, M. (2019). Antioxidant potential of various solvent extract from Morus alba fruits and its major polyphenols composition. Ciência Rural, 50, e20190371. Doi: 10.1590/0103-8478cr20190371.
Liang, F. (2024). Inhibition mechanism investigation of quercetagetin as a potential tyrosinase inhibitor. Frontiers in Chemistry, 12. doi: 10.3389/fchem.2024.1411801.
Logesh, R., Prasad, S. R., Chipurupalli, S., Robinson, N., & Mohankumar, S. K. (2023). Natural tyrosinase enzyme inhibitors: A path from melanin to melanoma and its reported pharmacological activities. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1878(6), 188968. doi: 10.1016/j.bbcan.2023.188968.
Luna, S. L. R. D., Ramírez-Garza, R. E., & Saldívar, S. O. S. (2020). Environmentally friendly methods for flavonoid extraction from plant material: impact of their operating conditions on yield and antioxidant properties. The Scientific World Journal, 2020, 6792069. doi: 10.1155/2020/6792069.
Mbunde, M., Mdegela, R. H., Laswai, H. S., & Mabiki, F. P. (2018). Quantification of phenolics, flavonoids, and antioxidant activity of Tamarindus indica from selected areas in Tanzania. Biofarmasi Journal of Natural Product Biochemistry, 16(1), 22-28. doi: 10.13057/biofar/f160103.
Miragliotta, A. M. G., Ojeda, G. A., Gonzalez, R. B., Jara, E. R., Teibler, G. P., Peruchena, N. M., & Torres, A. M. (2024). Extraction of anti-hyperglycaemic bioactive compounds from Phyllanthus niruri L. through solvent mixture design: In vitro and in vivo evaluation. Phytomedicine Plus, 4(3), 100622. doi: 10.1016/j.phyplu.2024.100622.
Muflihah, Y. M., Gollavelli, G., & Ling, Y.-C. (2021). Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 Indonesian indigenous herbs. Antioxidants, 10(10), 1530. doi: 10.3390/antiox10101530.
Nisar, M. F., He, J., Ahmed, A., Yang, Y., Li, M., & Wan, C. (2018). Chemical components and biological activities of the genus Phyllanthus: A review of the recent literature. Molecules: A Journal of Synthetic Chemistry and Natural Product Chemistry, 23(10), 2567. doi: 10.3390/molecules23102567.
Nursid, M., Khatulistiani, T., Noviendri, D., Hapsari, F., & Hardiyati, T. (2020). Total phenolic content, antioxidant activity and tyrosinase inhibitor from marine red algae extract collected from Kupang, East Nusa Tenggara. IOP Conference Series: Earth and Environmental Science, 493, 012013. doi: 10.1088/1755-1315/493/1/012013.
Obaid, R. J., Mughal, E. U., Naeem, N., Sadiq, A., Alsantali, R. I., Jassas, R. S., … Ahmed, S. A. (2021). Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: A systematic review. RSC Advances, 11(36), 22159. doi: 10.1039/d1ra03196a.
Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270. doi: 10.4161/oxim.2.5.9498.
Peng, Z., Wang, G., He, Y., Wang, J. J., & Zhao, Y. (2023). Tyrosinase inhibitory mechanism and anti-browning properties of novel kojic acid derivatives bearing aromatic aldehyde moiety. Current Research in Food Science, 6, 100421. doi: 10.1016/j.crfs.2022.100421.
Putra, I. K. W, Putra, G. P. G., & Wrasiati, L. P. (2020). Pengaruh perbandingan bahan dengan pelarut dan waktu maserasi terhadap ekstrak kulit biji kakao (Theobroma cacao L.) sebagai sumber antioksidan. Jurnal Rekayasa dan Manajemen Agroindustri, 8(2), 167. Doi: 10.24843/JRMA.2020.v08.i02.p02.
Putri, R. R., & Khonsa, K. (2022). Formulasi dan uji aktivitas antioksidan ekstrak buah cermai (Phyllanthus acidus L.) dengan metode DPPH. JIFMI: Jurnal Ilmiah Fitomedika Indonesia, 1(1).
Rosa, G. P., Palmeira, A., Resende, D. I. S. P., Almeida, I. F., Kane-Pagès, A., Barreto, M. C., … Pinto, M. M. M. (2021). Xanthones for melanogenesis inhibition: Molecular docking and QSAR studies to understand their anti-tyrosinase activity. Bioorganic & Medicinal Chemistry, 29, 115873. doi: 10.1016/j.bmc.2020.115873.
Royani, A., Mubarak, N. M., Hanafi, M., Verma, C., Lotulung, P. D. N., Prastya, M. E., … Manaf, A. (2024). Effect of solvent polarity on yield extract, antioxidant and antibacterial activities of phytochemicals from Andrographis paniculata leaves. Indian Chemical Engineer, 0(0), 1-15. doi: 10.1080/00194506.2024.2409260.
Sangeetha, K., Swaminathan, C., Sampathrajan, V., Nivethadevi, P., Pandian, K., & Elangovan, S. (2023). Identification of phytochemical constituents in Phyllanthus acidus L. leaf through gas chromatography-mass spectroscopy as a biostimulant. Asian Journal of Chemistry, 35, 673-678. doi: 10.14233/ajchem.2023.27552.
Villanueva-Bermejo, D., Siles-Sánchez, M. de las N., Hernández, D. M., García-Risco, M. R., Jaime, L., Santoyo, S., & Fornari, T. (2024). A theoretical framework to evaluate antioxidant synergistic effects from the coextraction of marjoram, rosemary, and parsley. Food Chemistry, 437, 137919. doi: 10.1016/j.foodchem.2023.137919.
Xiang, Z., Liu, L., Xu, Z., Kong, Q., Feng, S., Chen, T., ... Ding, C. (2024). Solvent effects on the phenolic compounds and antioxidant activity associated with Camellia polyodonta flower extracts. ACS Omega, 9(25), 27192-27203. doi: 10.1021/acsomega.4c01321.
Yang, C.-Y., Guo, Y., Wu, W.-J., Man, M.-Q., Tu, Y., & He, L. (2022). UVB-induced secretion of IL-1β promotes melanogenesis by upregulating TYR/TRP-1 expression in vitro. BioMed Research International, 2022, 8230646. doi: 10.1155/2022/8230646.
Zolghadri, S., Bahrami, A., Khan, M. T. H., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., & Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 279. doi: 10.1080/14756366.2018.1545767.
DOI: https://doi.org/10.15408/kauniyah.v18i2.42571
Refbacks
- There are currently no refbacks.
This work is licensed under a CC-BY- SA.
Indexed By:
  Â