Significance of Nitrogen Limited Medium (NLM) Components on Lipid Production Lipomyces starkeyi Y853
Abstract
Keywords
Full Text:
PDFReferences
Ageitos, J. M., Vallejo, J. A., Veiga-Crespo, P., & Villa, T. G. (2011). Oily yeasts as oleaginous cell factories. Applied Microbiology and Biotechnology, 90(4), 1219-1227. doi: 10.1007/s00253-011-3200-z.
Amir, A., Morsy, E. M., & Sedik, M. Z. (2015). Yeasts as a promising tool for microbial oil production. Middle East Journal of Agriculture Research, 04(02), 223-231.
Angerbauer, C., Siebenhofer, M., Mittelbach, M., & Guebitz, G. M. (2008). Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresource Technology, 99(8), 3051-3056. doi: 10.1016/j.biortech.2007.06.045.
Antony, J. (2023). A systematic methodology for the design of experiments. In Design of experiments for engineers and scientists (pp. 33-50). Newcastle, England: Elsevier.
Bevilacqua, A., Corbo, M. R., Mastromatteo, M., & Sinigaglia, M. (2008). Combined effects of pH, yeast extract, carbohydrates, and di-ammonium hydrogen citrate on the biomass production and acidifying ability of a probiotic Lactobacillus plantarum strain, isolated from table olives, in a batch system. World Journal of Microbiology & Biotechnology, 24(9), 1721-1729. doi: 10.1007/s11274-008-9666-x.
Calvey, C. H., Su, Y.-K., Willis, L. B., McGee, M., & Jeffries, T. W. (2016). Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi. Bioresource Technology, 200, 780-788. doi: 10.1016/j.biortech.2015.10.104.
Casey, E., Mosier, N. S., Adamec, J., Stockdale, Z., Ho, N., & Sedlak, M. (2013). Effect of salts on the co-fermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae. Biotechnology for Biofuels, 6(1), 83. doi: 10.1186/1754-6834-6-83.
Chang, F. H. (1986). Effect of nutrient compositions in peat hydrolysate on protein and biomass yields of Candida tropicalis. Biology and Fertility of Soils, 2(4). doi: 10.1007/BF00260842.
Dombek, K. M., & Ingram, L. O. (1986). Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation. Applied and Environmental Microbiology, 52(5), 975-981. doi: 10.1128/aem.52.5.975-981.1986.
Dzurendova, S., Zimmermann, B., Tafintseva, V., Kohler, A., Horn, S. J., & Shapaval, V. (2020). Metal and phosphate ions show remarkable influence on the biomass production and lipid accumulation in oleaginous Mucor circinelloides. Journal of Fungi (Basel, Switzerland), 6(4). doi: 10.3390/jof6040260.
Evans, C. T., & Ratledge, C. (1984). Effect of nitrogen source on lipid accumulation in oleaginous yeasts. Journal of Microbiology Research, 130(7), 1693-1704. doi: 10.1099/00221287-130-7-1693.
Ganatsios, V., Koutinas, A. A., Bekatorou, A., Panagopoulos, V., Banat, I. M., Terpou, A., & Kopsahelis, N. (2017). Porous cellulose as a promoter of oil production by the oleaginous yeast Lipomyces starkeyi using mixed agroindustrial wastes. Bioresource Technology, 244(Pt 1), 629-634. doi: 10.1016/j.biortech.2017.07.163.
Gao, D., Zeng, J., Zheng, Y., Yu, X., & Chen, S. (2013). Microbial lipid production from xylose by Mortierella isabellina. Bioresource Technology, 133, 315-321. doi: 10.1016/j.biortech.2013.01.132.
Jiru, T. M., Abate, D., Kiggundu, N., Pohl, C., & Groenewald, M. (2016). Oleaginous yeasts from Ethiopia. AMB Express, 6(1), 78. Doi: 10.1186/s13568-016-0242-8.
Julaeha, E., Rustiyaty, S., Fajri, N. N., Ramdani, F., & Tantra, R. (2016). Pemanfaatan tepung gadung (Dioscorea hispida Dennst.) pada produksi amilase menggunakan Bacillus sp. Edufortech, 1(1), 45-52.
Kaur, M., Chauhan, K. K., Aggarwal, T., Bharadwaj, P., Vig, R., Ihianle, I. K., … Owa, K. (2023). Taguchi-based design of sequential convolution neural network for classification of defective fasteners. In Sentiment analysis and deep learning: Proceedings of ICSADL 2022 (pp. 512-527). Singapore: Springer Nature Singapore.
Kraisintu, P., Yongmanitchai, W., & Limtong, S. (2010). Selection and optimization for lipid production of a newly isolated oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16. Agriculture and Natural Resources, 44(3), 436-445.
Liu, J. X., Yue, Q. Y., Gao, B. Y., Ma, Z. H., & Zhang, P.-D. (2012). Microbial treatment of the monosodium glutamate wastewater by Lipomyces starkeyi to produce microbial lipids. Bioresource Technology, 106, 69-73. doi: 10.1016/j.biortech.2011.12.022.
Liu, J. X., Yue, Q. Y., Gao, B. Y., Wang, Y., Li, Q., & Zhang, P.-D. (2013). Research on microbial lipid production from potato starch wastewater as culture medium by Lipomyces starkeyi. Water Science and Technology, 67(8), 1802-1808. doi: 10.2166/wst.2013.059.
Liu, L. P., Zong, M. H., Hu, Y., Li, N., Lou, W. Y., & Wu, H. (2017). Efficient microbial oil production on crude glycerol by Lipomyces starkeyi AS 2.1560 and its kinetics. Process Biochemistry, 58, 230-238. doi: 10.1016/j.procbio.2017.03.024.
Li, Y., Liu, B., Zhao, Z., & Bai, F. (2006). Optimization of culture conditions for lipid production by Rhodosporidium toruloides. Chinese Journal of Biotechnology, 22(4), 650-656. doi: 10.1016/S1872-2075(06)60050-2.
Li, Q., Du, W., & Liu, D. (2008). Perspectives of microbial oils for biodiesel production. Applied Microbiology and Biotechnology, 80(5), 749-756. doi: 10.1007/s00253-008-1625-9.
Li, R., Jin, M., Du, J., Li, M., Chen, S., & Yang, S. (2020). The magnesium concentration in yeast extracts is a major determinant affecting the ethanol fermentation performance of Zymomonas mobilis. Frontiers in Bioengineering and Biotechnology, 8, 957. doi: 10.3389/fbioe.2020.00957.
Mar’atussholihah, H. T. (2023). Skrining primer khamir oleaginous genus Lipomyces koleksi indonesian culture collection dalam menghasilkan lipid (Undergraduate thesis). Universitas Gadjah Mada, Yogyakarta, Indonesia.
Morales-Palomo, S., Tomás-Pejó, E., & González-Fernández, C. (2023). Phosphate limitation is a crucial factor in enhancing yeast lipid production from short-chain fatty acids. Microbial Biotechnology, 16(2), 372-380. doi: 10.1111/1751-7915.14197.
Morphis, C., Shofner, C., Pugh, D., Berry, S., & Mendoza, E. (2017). The effect of high amounts of salt on yeast's respiration rate. Journal of Introductory Biology Investigations, 6(2).
Oguri, E., Masaki, K., Naganuma, T., & Iefuji, H. (2012). Phylogenetic and biochemical characterization of the oil-producing yeast Lipomyces starkeyi. Antonie Van Leeuwenhoek, 101(2), 359-368. doi: 10.1007/s10482-011-9641-7.
Osorio-González, C. S., Saini, R., Hegde, K., Brar, S. K., Lefebvre, A., & Avalos-Ramirez, A. (2023). Carbon/nitrogen ratio as a tool to enhance the lipid production in Rhodosporidium toruloides-1588 using c5 and c6 wood hydrolysates. Journal of Cleaner Production, 384, 135687. doi: 10.1016/j.jclepro.2022.135687.
Ratledge, C., & Wynn, J. P. (2002). The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, 51, 1-51. doi: 10.1016/s0065-2164(02)51000-5.
Ratledge, C., & Cohen, Z. (2008). Microbial and algal oils: Do they have a future for biodiesel or as commodity oils?. Lipid Technology, 20(7), 155-160. doi: 10.1002/lite.200800044.
Saenge, C., Cheirsilp, B., Suksaroge, T. T., & Bourtoom, T. (2011). Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochemistry, 46(1), 210-218. doi: 10.1016/j.procbio.2010.08.009.
Stanbury, P. F., Whitaker, A., & Hall, S. J. (1995). Principles of fermentation technology, second edition (2nd ed) . England: Elsevier.
Suutari, M., Priha, P., & Laakso, S. (1993). Temperature shifts in regulation of lipids accumulated by Lipomyces starkeyi. Journal of the American Oil Chemists’ Society, 70(9), 891-894. doi: 10.1007/BF02545349.
Tesnière, C., Delobel, P., Pradal, M., & Blondin, B. (2013). Impact of nutrient imbalance on wine alcoholic fermentations: Nitrogen excess enhances yeast cell death in lipid-limited must. Plos One, 8(4), e61645. Doi: 10.1371/journal.pone.0061645.
Vanaja, K., & Rani, R. H. S. (2007). Design of experiments: Concept and applications of Plackett Burman design. Clinical Research and Regulatory Affairs, 24(1), 1-23. doi: 10.1080/10601330701220520.
VijayaKumar, S., Kumutha, K., Krishnan, P. S., & Gopal, H. (2010). Effect of carbon sources on lipid and biomass production by oleaginous yeast cultures. Management Analysis Journal, 97(January March), 62-64. doi: 10.29321/MAJ.10.100344.
Yamazaki, H., Kobayashi, S., Ebina, S., Abe, S., Ara, S., Shida, Y., … Takaku, H. (2019). Highly selective isolation and characterization of Lipomyces starkeyi mutants with increased production of triacylglycerol. Applied Microbiology and Biotechnology, 103(15), 6297-6308. doi: 10.1007/s00253-019-09936-3.
Zhao, X., Kong, X., Hua, Y., Feng, B., & Zhao, Z. (Kent). (2008). Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. European Journal of Lipid Science and Technology, 110(5), 405-412. doi: 10.1002/ejlt.200700224.
Zhongfeng, G. (2010). Effect of nitrogen sources on stress tolerance of yeast in very high gravity ethanol fermentation. Chemical Industry and Engineering Progress. 29(9), 1719.
DOI: https://doi.org/10.15408/kauniyah.v18i2.41575
Refbacks
- There are currently no refbacks.
This work is licensed under a CC-BY- SA.
Indexed By:
  Â