Significance of Nitrogen Limited Medium (NLM) Components on Lipid Production Lipomyces starkeyi Y853

Aqila Raihana Khairani, Miftahul Ilmi

Abstract


Oleaginous yeasts, such as Lipomyces starkeyi, can convert carbon and nitrogen sources into lipids up to 50% of the cell's dry weight. A high lipid percentage was achieved (53.5%) using Nitrogen Limited Medium (NLM), which indicates that the components of NLM play a role in the production of biomass and lipids. Nevertheless, the statistical analysis of the role of NLM components on lipid production has not yet been conducted. Thus, this research was designed and carried out to determine the role of NLM components in lipid production using Plackett-Burman Design. The results show that the variables had an insignificant impact on lipid production based on the ANOVA test (P >0.05). Additionally, main effect plots were generated to identify the negative and positive effects of the components. The graph indicates that peptone and yeast extract (YE) are essential components in high concentrations to increase lipid production. This result was due to the insufficient concentration used in this experiment (YE= 0.5 g/L; peptone= 0.3 g/L) compared to the optimal conditions (YE= 8 g/L; peptone= 3 g/L). Therefore, further research should be conducted with the addition of external factors (pH, temperature, shaker speed) to acquire more significant results on biomass lipid production.

Keywords


Lipid production; Lipomyces starkeyi; Nitrogen Limited Medium (NLM); Plackett-Burman; Produksi lipid

Full Text:

PDF

References


Ageitos, J. M., Vallejo, J. A., Veiga-Crespo, P., & Villa, T. G. (2011). Oily yeasts as oleaginous cell factories. Applied Microbiology and Biotechnology, 90(4), 1219-1227. doi: 10.1007/s00253-011-3200-z.

Amir, A., Morsy, E. M., & Sedik, M. Z. (2015). Yeasts as a promising tool for microbial oil production. Middle East Journal of Agriculture Research, 04(02), 223-231.

Angerbauer, C., Siebenhofer, M., Mittelbach, M., & Guebitz, G. M. (2008). Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresource Technology, 99(8), 3051-3056. doi: 10.1016/j.biortech.2007.06.045.

Antony, J. (2023). A systematic methodology for the design of experiments. In Design of experiments for engineers and scientists (pp. 33-50). Newcastle, England: Elsevier.

Bevilacqua, A., Corbo, M. R., Mastromatteo, M., & Sinigaglia, M. (2008). Combined effects of pH, yeast extract, carbohydrates, and di-ammonium hydrogen citrate on the biomass production and acidifying ability of a probiotic Lactobacillus plantarum strain, isolated from table olives, in a batch system. World Journal of Microbiology & Biotechnology, 24(9), 1721-1729. doi: 10.1007/s11274-008-9666-x.

Calvey, C. H., Su, Y.-K., Willis, L. B., McGee, M., & Jeffries, T. W. (2016). Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi. Bioresource Technology, 200, 780-788. doi: 10.1016/j.biortech.2015.10.104.

Casey, E., Mosier, N. S., Adamec, J., Stockdale, Z., Ho, N., & Sedlak, M. (2013). Effect of salts on the co-fermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae. Biotechnology for Biofuels, 6(1), 83. doi: 10.1186/1754-6834-6-83.

Chang, F. H. (1986). Effect of nutrient compositions in peat hydrolysate on protein and biomass yields of Candida tropicalis. Biology and Fertility of Soils, 2(4). doi: 10.1007/BF00260842.

Dombek, K. M., & Ingram, L. O. (1986). Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation. Applied and Environmental Microbiology, 52(5), 975-981. doi: 10.1128/aem.52.5.975-981.1986.

Dzurendova, S., Zimmermann, B., Tafintseva, V., Kohler, A., Horn, S. J., & Shapaval, V. (2020). Metal and phosphate ions show remarkable influence on the biomass production and lipid accumulation in oleaginous Mucor circinelloides. Journal of Fungi (Basel, Switzerland), 6(4). doi: 10.3390/jof6040260.

Evans, C. T., & Ratledge, C. (1984). Effect of nitrogen source on lipid accumulation in oleaginous yeasts. Journal of Microbiology Research, 130(7), 1693-1704. doi: 10.1099/00221287-130-7-1693.

Ganatsios, V., Koutinas, A. A., Bekatorou, A., Panagopoulos, V., Banat, I. M., Terpou, A., & Kopsahelis, N. (2017). Porous cellulose as a promoter of oil production by the oleaginous yeast Lipomyces starkeyi using mixed agroindustrial wastes. Bioresource Technology, 244(Pt 1), 629-634. doi: 10.1016/j.biortech.2017.07.163.

Gao, D., Zeng, J., Zheng, Y., Yu, X., & Chen, S. (2013). Microbial lipid production from xylose by Mortierella isabellina. Bioresource Technology, 133, 315-321. doi: 10.1016/j.biortech.2013.01.132.

Jiru, T. M., Abate, D., Kiggundu, N., Pohl, C., & Groenewald, M. (2016). Oleaginous yeasts from Ethiopia. AMB Express, 6(1), 78. Doi: 10.1186/s13568-016-0242-8.

Julaeha, E., Rustiyaty, S., Fajri, N. N., Ramdani, F., & Tantra, R. (2016). Pemanfaatan tepung gadung (Dioscorea hispida Dennst.) pada produksi amilase menggunakan Bacillus sp. Edufortech, 1(1), 45-52.

Kaur, M., Chauhan, K. K., Aggarwal, T., Bharadwaj, P., Vig, R., Ihianle, I. K., … Owa, K. (2023). Taguchi-based design of sequential convolution neural network for classification of defective fasteners. In Sentiment analysis and deep learning: Proceedings of ICSADL 2022 (pp. 512-527). Singapore: Springer Nature Singapore.

Kraisintu, P., Yongmanitchai, W., & Limtong, S. (2010). Selection and optimization for lipid production of a newly isolated oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16. Agriculture and Natural Resources, 44(3), 436-445.

Liu, J. X., Yue, Q. Y., Gao, B. Y., Ma, Z. H., & Zhang, P.-D. (2012). Microbial treatment of the monosodium glutamate wastewater by Lipomyces starkeyi to produce microbial lipids. Bioresource Technology, 106, 69-73. doi: 10.1016/j.biortech.2011.12.022.

Liu, J. X., Yue, Q. Y., Gao, B. Y., Wang, Y., Li, Q., & Zhang, P.-D. (2013). Research on microbial lipid production from potato starch wastewater as culture medium by Lipomyces starkeyi. Water Science and Technology, 67(8), 1802-1808. doi: 10.2166/wst.2013.059.

Liu, L. P., Zong, M. H., Hu, Y., Li, N., Lou, W. Y., & Wu, H. (2017). Efficient microbial oil production on crude glycerol by Lipomyces starkeyi AS 2.1560 and its kinetics. Process Biochemistry, 58, 230-238. doi: 10.1016/j.procbio.2017.03.024.

Li, Y., Liu, B., Zhao, Z., & Bai, F. (2006). Optimization of culture conditions for lipid production by Rhodosporidium toruloides. Chinese Journal of Biotechnology, 22(4), 650-656. doi: 10.1016/S1872-2075(06)60050-2.

Li, Q., Du, W., & Liu, D. (2008). Perspectives of microbial oils for biodiesel production. Applied Microbiology and Biotechnology, 80(5), 749-756. doi: 10.1007/s00253-008-1625-9.

Li, R., Jin, M., Du, J., Li, M., Chen, S., & Yang, S. (2020). The magnesium concentration in yeast extracts is a major determinant affecting the ethanol fermentation performance of Zymomonas mobilis. Frontiers in Bioengineering and Biotechnology, 8, 957. doi: 10.3389/fbioe.2020.00957.

Mar’atussholihah, H. T. (2023). Skrining primer khamir oleaginous genus Lipomyces koleksi indonesian culture collection dalam menghasilkan lipid (Undergraduate thesis). Universitas Gadjah Mada, Yogyakarta, Indonesia.

Morales-Palomo, S., Tomás-Pejó, E., & González-Fernández, C. (2023). Phosphate limitation is a crucial factor in enhancing yeast lipid production from short-chain fatty acids. Microbial Biotechnology, 16(2), 372-380. doi: 10.1111/1751-7915.14197.

Morphis, C., Shofner, C., Pugh, D., Berry, S., & Mendoza, E. (2017). The effect of high amounts of salt on yeast's respiration rate. Journal of Introductory Biology Investigations, 6(2).

Oguri, E., Masaki, K., Naganuma, T., & Iefuji, H. (2012). Phylogenetic and biochemical characterization of the oil-producing yeast Lipomyces starkeyi. Antonie Van Leeuwenhoek, 101(2), 359-368. doi: 10.1007/s10482-011-9641-7.

Osorio-González, C. S., Saini, R., Hegde, K., Brar, S. K., Lefebvre, A., & Avalos-Ramirez, A. (2023). Carbon/nitrogen ratio as a tool to enhance the lipid production in Rhodosporidium toruloides-1588 using c5 and c6 wood hydrolysates. Journal of Cleaner Production, 384, 135687. doi: 10.1016/j.jclepro.2022.135687.

Ratledge, C., & Wynn, J. P. (2002). The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, 51, 1-51. doi: 10.1016/s0065-2164(02)51000-5.

Ratledge, C., & Cohen, Z. (2008). Microbial and algal oils: Do they have a future for biodiesel or as commodity oils?. Lipid Technology, 20(7), 155-160. doi: 10.1002/lite.200800044.

Saenge, C., Cheirsilp, B., Suksaroge, T. T., & Bourtoom, T. (2011). Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochemistry, 46(1), 210-218. doi: 10.1016/j.procbio.2010.08.009.

Stanbury, P. F., Whitaker, A., & Hall, S. J. (1995). Principles of fermentation technology, second edition (2nd ed) . England: Elsevier.

Suutari, M., Priha, P., & Laakso, S. (1993). Temperature shifts in regulation of lipids accumulated by Lipomyces starkeyi. Journal of the American Oil Chemists’ Society, 70(9), 891-894. doi: 10.1007/BF02545349.

Tesnière, C., Delobel, P., Pradal, M., & Blondin, B. (2013). Impact of nutrient imbalance on wine alcoholic fermentations: Nitrogen excess enhances yeast cell death in lipid-limited must. Plos One, 8(4), e61645. Doi: 10.1371/journal.pone.0061645.

Vanaja, K., & Rani, R. H. S. (2007). Design of experiments: Concept and applications of Plackett Burman design. Clinical Research and Regulatory Affairs, 24(1), 1-23. doi: 10.1080/10601330701220520.

VijayaKumar, S., Kumutha, K., Krishnan, P. S., & Gopal, H. (2010). Effect of carbon sources on lipid and biomass production by oleaginous yeast cultures. Management Analysis Journal, 97(January March), 62-64. doi: 10.29321/MAJ.10.100344.

Yamazaki, H., Kobayashi, S., Ebina, S., Abe, S., Ara, S., Shida, Y., … Takaku, H. (2019). Highly selective isolation and characterization of Lipomyces starkeyi mutants with increased production of triacylglycerol. Applied Microbiology and Biotechnology, 103(15), 6297-6308. doi: 10.1007/s00253-019-09936-3.

Zhao, X., Kong, X., Hua, Y., Feng, B., & Zhao, Z. (Kent). (2008). Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. European Journal of Lipid Science and Technology, 110(5), 405-412. doi: 10.1002/ejlt.200700224.

Zhongfeng, G. (2010). Effect of nitrogen sources on stress tolerance of yeast in very high gravity ethanol fermentation. Chemical Industry and Engineering Progress. 29(9), 1719.




DOI: https://doi.org/10.15408/kauniyah.v18i2.41575

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120