Saccharomyces cerevisiae’s Potential Application in Improving Quality of Yogurt Produced in Suboptimal Fermentation Conditions

Andreas Binar Aji Sukmana, Elizabeth Betty Elok Kristiani, Rifky Adi Wicaksono

Abstract


The quality of a yogurt highly depends on the milk’s quality, the culture, and the incubation temperature. However, many home yogurt makers do not have access to fresh milk and incubator which may lead to subpar-quality yogurt. This research explored the potential of using Saccharomyces cerevisiae to improve yogurt quality when fermentation conditions are suboptimal. The experiment was conducted by inoculating ultra-high temperature (UHT)--sterilized milk with a 10% yogurt starter containing Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus, also various S. cerevisiae concentrations (0; 0.156; 0.625; 2.5; and 10%). The inoculated milk was fermented at 30 °C for 24 hours. Their sensory qualities were examined by the panelists. Their acidity, pH, and microorganism count were examined before and after incubation. S. cerevisiae addition at 2.5% displayed better taste and texture without discernable unpleasant aroma. These improvements might be due to the ethanol production by S. cerevisiae. S. cerevisiae addition was also found to slightly inhibit the growth of L. delbrueckii subsp. bulgaricus and S. thermophilus. However, the combined number of these probiotic microorganisms (2.7 × 108 CFU/mL) was still by the national standard.  S. cerevisiae addition potentially improves yogurt quality made from UHT milk incubated at lower temperatures.

Keywords


Fermentation; Improvement; Quality; Saccharomyces cerevisiae; Yogurt; Fermentasi; Kualitas; Peningkatan

Full Text:

PDF

References


Alhaj, O. A., Lajnaf, R., Jrad, Z., Alshuniaber, M. A., Jahrami, H. A., & Serag El-Din, M. F. (2022). Comparison of ethanol stability and chemical composition of camel milk from five samples. Animals: An Open Access Journal from MDPI, 12(5), 615. doi: 10.3390/ani12050615.

Ballet, N., Renaud, S., Roume, H., George, F., Vandekerckove, P., Boyer, M., & Durand-Dubief, M. (2023). Saccharomyces cerevisiae: Multifaceted applications in one health and the achievement of sustainable development goals. Encyclopedia, 3(2), 602-613. doi: 10.3390/encyclopedia3020043.

Burton, E., Arief, I. I., & Taufik, E. (2014). Formulasi yoghurt probiotik karbonasi dan potensi sifat fungsionalnya. Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan, 2(1), 213-218.

Chen, C., Zhao, S., Hao, G., Yu, H., Tian, H., & Zhao, G. (2017). Role of lactic acid bacteria on the yogurt flavor: A review. International Journal of Food Properties, 20(S1), S316-S330. Doi: 10.1080/10942912.2017.1295988.

Cheng, H. (2010). Volatile flavor compounds in yogurt: A review. Critical Reviews in Food Science and Nutrition, 50(10), 938-950. doi: 10.1080/10408390903044081.

Folkenberg, D. M., & Martens, M. (2003). Sensory properties of low-fat yogurts. Part a: Effect of fat content, fermentation culture, and addition of non-fat dry milk on the sensory properties of plain yogurts. Milchwissenschaft-Milk Science International, 58, 48-51.

García-Gómez, B., Romero-Rodríguez, Á., Vázquez-Odériz, L., Muñoz-Ferreiro, N., & Vázquez, M. (2019). Sensory evaluation of low-fat yogurt produced with microbial transglutaminase and comparison with physicochemical evaluation. Journal of the Science of Food and Agriculture, 99(5), 2088-2095. doi: 10.1002/jsfa.9401.

Glušac, J., Stijepić, M., Đurđević-Milošević, D., Milanović, S., Kanurić, K., & Vukić, V. (2015). Growth and viability of Lactobacillus delbrueckii subsp. Bulgaricus and Streptococcus thermophilus in traditional yogurt enriched by honey and whey protein concentrate. Iranian Journal of Veterinary Research, 16(3), 249-254.

Guevarra, R. (2016). Viable counts of lactic acid bacteria in Philippine commercial yogurts. International Journal of Dairy Science and Processing, 2(5), 24-28. doi: 10.13140/RG.2.1.4030.3764.

Krasaekoopt, W., Bhandari, B., & Deeth, H. (2003). Yogurt from UHT milk: A review. Australian Journal of Dairy Technology, 58(1), 26-29.

Krasaekoopt, W., Bhandari, B., & Deeth, H. (2004). Comparison of the texture of yogurt made from conventionally treated milk and UHT milk fortified with low-heat skim milk powder. Journal of Food Science, 69(6), E276-E280. Doi: 10.1111/j.1365-2621.2004.tb10998.x.

Lahue, C., Madden, A., Dunn, R. R., & Smukowski Heil, C. (2020). History and domestication of Saccharomyces cerevisiae in bread baking. Frontiers in Genetics, 11(584718), 1-14.

Liu, J.-J., Zhang, G.-C., Oh, E. J., Pathanibul, P., Turner, T. L., & Jin, Y.-S. (2016a). Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose. Journal of Biotechnology, 234, 99-104. doi: 10.1016/j.jbiotec.2016.07.018.

Liu, E., Zheng, H., Shi, T., Ye, L., Konno, T., Oda, M., … Ji, Z.-S. (2016b). Relationship between Lactobacillus bulgaricus and Streptococcus thermophilus under whey conditions: Focus on amino acid formation. International Dairy Journal, 56, 141-150. doi: 10.1016/j.idairyj.2016.01.019.

Mena, B., & Aryana, K. J. (2012). Influence of ethanol on probiotic and culture bacteria Lactobacillus bulgaricus and Streptococcus thermophilus within a therapeutic product. Open Journal of Medical Microbiology, 2(3), 70-76. doi: 10.4236/ojmm.2012.23010.

Niamah, A. K. (2017). Physicochemical and microbial characteristics of yogurt with added Saccharomyces Boulardii. Current Research in Nutrition and Food Science Journal, 5(3), 300-307.

Parapouli, M., Vasileiadis, A., Afendra, A.-S., & Hatziloukas, E. (2020). Saccharomyces cerevisiae and its industrial applications. AIMS Microbiology, 6(1), 1-31. doi: 10.3934/microbiol.2020001.

Peramiarti, I. (2021). Lactic acid bacteria (Lactobacillus bulgaricus and Streptococcus thermophillus) in yogurt inhibit the growth of Escherichia coli, Salmonella typhimurium, and Shigella sp. in vitro. Jurnal Kedokteran Brawijaya, 31(4), 211-215. doi: 10.21776/ub.jkb.2021.031.04.2.

Roostita, R., & Fleet, G. H. (1996). Growth of yeasts in milk and associated changes to milk composition. International Journal of Food Microbiology, 31(1), 205-219. doi: 10.1016/0168-1605(96)00999-3.

Setyawardani, T., Sumarmono, J., Rahardjo, A., Arkan, N., & Fadhlurrohman, I. (2024). Quality of yogurt produced from various types of milk as raw materials. IOP Conference Series: Earth and Environmental Science, 1292(012020), 1-4. doi: 10.1088/1755-1315/1292/1/012020.

Sfakianakis, P., & Tzia, C. (2014). Conventional and innovative processing of milk for yogurt manufacture; development of texture and flavor: A review. Foods, 3(1), 176-193. doi: 10.3390/foods3010176.

Stephen, E., & Verwiyeh, S. (2016). Quantification of physicochemical components in yogurts from coconut, tiger nut, and fresh cow milk. Advances in Biotechnology and Microbiology, 1(5), 1-8. doi: 10.19080/AIBM.2016.01.555573.

Tavakoli, M., Najafi, M. B. H., & Mohebbi, M. (2019). Effect of the milk fat content and starter culture selection on proteolysis and antioxidant activity of probiotic yogurt. Heliyon, 5(e01204), 1-17. doi: 10.1016/j.heliyon.2019.e01204.

Zhao, R., Chen, Z., Liang, J., Dou, J., Guo, F., Xu, Z., & Wang, T. (2023). Advances in Genetic tools and their application in Streptococcus thermophilus. Foods, 12(3119), 1-19. doi: 10.3390/foods12163119.




DOI: https://doi.org/10.15408/kauniyah.v18i2.38675

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120