Analysis of Microglia Morphology and Number in Wistar Rats Brain After CIDR1α-PfEMP1 Recombinant Protein Injection

Erma Sulistyaningsih, Izza Amalia Putri, Sheilla Rachmania

Abstract


Abstract

One malaria vaccine candidate is Cysteine-rich Interdomain Region 1α (CIDR1α) of Plasmodium falciparumErythrocyte Membrane Protein 1 (PfEMP1), an essential protein involved in the pathogenesis of cerebral malaria. Microglia in the brain act as the first line of defense against brain pathological changes. The study aimed to evaluate the response of brain microglia to the CIDR1α-PfEMP1 recombinant protein injection by observing microglia morphology and number in rat’s cerebral cortex. 12 Wistar rats were divided into the control group, which was injected with normal saline solution, and the treatment group, which was injected with 150 µg CIDR1α-PfEMP1 recombinant protein combined with adjuvants. Injection was conducted thrice within three-week intervals (day 1, 21, and 42). Wistar rats were euthanized on day 56, and histological slides were prepared with Hematoxylin-Eosin staining. Examination using a microscope, 400x, and Fiji Image J software showed microglia morphology of ramified and rod cells in both the control and treatment groups. The microglia number in the control group was 93.00 ± 5.77, and the treatment group was 105.75 ± 15.62. Statistical analysis using an independent t-test showed no significant differences between groups (p= 0.15). The result indicated that the injection of CIDR1α-PfEMP1 recombinant protein did not provoke pathological changes in brain tissue, which induced a microglia response. This study strengthens the potential of the CIDR1α-PfEMP1 recombinant protein as a peptide-based malaria vaccine candidate.

Abstrak

Salah satu kandidat vaksin malaria adalah Cysteine-rich Interdomain Region 1α (CIDR1α) dari Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1), protein penting dalam patogenesis malaria serebral. Mikroglia di otak berperan sebagai pertahanan lini pertama terhadap perubahan di otak. Penelitian ini bertujuan mengevaluasi respon mikroglia otak terhadap pemberian protein rekombinan CIDR1α-PfEMP1 dengan mengamati morfologi dan jumlah mikrolia pada korteks serebri otak tikus. 12 tikus Wistar dibagi dalam kelompok kontrol yang diinjeksi normal saline dan  kelompok perlakuan diinjeksi 150 µg protein rekombinan CIDR1α-PfEMP1 yang dikombinasikan dengan adjuvant. Injeksi dilakukan tiga kali dengan interval tiga minggu (hari 1, 21, dan 42). Tikus dieuthanasia pada hari ke-56 dan preparat histologi otak disiapkan dengan pengecatan Hematoxyline-Eosin. Pengamatan menggunakan mikroskop 400x dan Fiji Image J software menunjukkan morfologi ramified dan rod cell pada kelompok kontrol maupun perlakuan. Jumlah mikroglia pada kelompok kontrol 93,00 ± 5,7 sedangkan kelompok perlakuan 105,75 ± 15,62). Analisis statistik menggunakan independent-t test menunjukkan tidak terdapat perbedaan yang bermakna antara 2 kelompok (p= 0,15). Hasil ini mengindikasikan bahwa pemberian protein rekombinan CIDR1α-PfEMP1 tidak menimbulkan patologi pada jaringan otak yang memicu respon mikroglia. Hal ini menguatkan potensi protein rekombinan CIDR1α-PfEMP1 sebagai kandidat vaksin malaria berbasis peptida.


Keywords


CIDR1α; Malaria; Microglia; PfEMP1; Plasmodium falciparum; Vaccine; Mikroglia; Vaksin

Full Text:

PDF

References


Aboghazleh, R., Boyajian, S. D., Atiyat, A., Udwan, M., Al-Helalat, M., & Al-Rashaideh, R. (2024). Rodent brain extraction and dissection : A comprehensive approach. MethodsX, 12(102516). doi: 10.1016/j.mex.2023.102516.

Andoh, N. E., & Gyan, B. A. (2021). The potential roles of glial cells in the neuropathogenesis of cerebral malaria. Frontiers in Cellular and Infection Microbiology, 11, 741370. doi: 10.3389/fcimb.2021.741370.

Apostólico, J. D. S., Lunardelli, V. A. S., Coirada, F. C., Boscardin, S. B., & Rosa, D. S. (2016). Adjuvants: Classification, modus operandi, and licensing. Journal of Immunology Research, 2016(1459394). doi: 10.1155/2016/1459394.

Arcuri, C., Mecca, C., Bianchi, R., Giambanco, I., & Donato, R. (2017). The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS. Frontiers in Molecular Neuroscience, 10(191), 1-22. doi: 10.3389/fnmol.2017.00191.

Bachmann, M. F., & Jennings, G. T. (2010). Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nature Reviews Immunology, 10(11), 787-796. doi: 10.1038/nri2868.

Capuccini, B., Lin, J., Talavera-López, C., Khan, S. M., Sodenkamp, J., Spaccapelo, R., & Langhorne, J. (2016). Transcriptomic profiling of microglia reveals signatures of cell activation and immune response, during experimental cerebral malaria. Scientific Reports, 6(39256). doi: 10.1038/srep39258.

Chen, Z., & Trapp, B. D. (2016). Microglia and neuroprotection. Journal of Neurochemistry, 136(1), 10-17. doi: 10.1111/jnc.13062.

Cid, R., & Bolívar, J. (2021). Platforms for production of protein-based vaccines: From classical to next-generation strategies. Biomolecules, 11(8), 1-33. doi: 10.3390/biom11081072.

Dewi, R., Ratnadewi, A. A. I., Sawitri, W. D., Rachmania, S., & Sulistyaningsih, E. (2018). Cloning, sequence analysis, and expression of CIDR1α-pfEMP1 from Indonesian Plasmodium falciparum isolate. Current Topics in Peptide and Protein Research, 19, 95-104.

Dvorin, J. D. (2017). Getting your head around cerebral malaria. Cell Host & Microbe, 22(5), 586-588. doi: 10.1016/j.chom.2017.10.017.

Garman, R. H. (2011). Histology of the central nervous system. Toxicologic Pathology, 39(1), 22-35. doi: 10.1177/0192623310389621.

Harmsen, C., Turner, L., Thrane, S., Sander, A. F., Theander, T. G., & Lavstsen, T. (2020). Immunization with virus-like particles conjugated to CIDRα1 domain of Plasmodium falciparum erythrocyte membrane protein 1 induces inhibitory antibodies. Malaria Journal, 19(1), 1-11. doi: 10.1186/s12936-020-03201-z.

Jensen, A. R., Adams, Y., & Hviid, L. (2020). Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it. Immunological Reviews, 293(1), 230-252. doi: 10.1111/imr.12807.

Jespersen, J. S., Wang, C. W., Mkumbaye, S. I., Minja, D. T., Petersen, B., Turner, L., … Lavstsen, T. (2016). Plasmodium falciparum var genes expressed in children with severe malaria encode CIDR α1 domains. EMBO Molecular Medicine, 8(8), 839-850. doi: 10.15252/emmm.201606188.

Jurga, A. M., Paleczna, M., & Kuter, K. Z. (2020). Overview of general and discriminating markers of differential microglia phenotypes. Frontiers in Cellular Neuroscience, 14(198), 1-18. doi: 10.3389/fncel.2020.00198.

Kafai, N. M., & John, A. R. O. (2018). Malaria in children. Infectious Disease Clinics of North America, 32(1), 189-200. doi: 10.1016/j.idc.2017.10.008.

Kessler, A., Dankwa, S., Bernabeu, M., Harawa, V., Danziger, S. A., Duffy, F., … John, D. (2018). Linking EPCR-binding PfEMP1 to brain swelling in pediatric cerebral malaria. Cell Host Microbe, 22(5), 601-614. doi: 10.1016/j.chom.2017.09.009.

Kongsui, R., Beynon, S. B., Johnson, S. J., & Walker, F. R. (2014). Quantitative assessment of microglial morphology and density reveals remarkable consistency in the distribution and morphology of cells within the healthy prefrontal cortex of the rat. Journal of Neuroinflammation, 11(184), 1-9. doi: 10.1186/s12974-014-0182-7.

Mbagwu, S. I., Lannes, N., Walch, M., Filgueira, L., & Mantel, P. Y. (2020). Human microglia respond to malaria-induced extracellular vesicles. Pathogens, 9(21), 1-11. doi: 10.3390/pathogens9010021.

Ministry of Health of Republic Indonesia. (2019). Laporan nasional RISKESDAS 2018. Jakarta: Lembaga Penerbit Badan Penelitian dan Pengembangan Kesehatan.

Ministry of Health of Republic Indonesia. (2021). Profil kesehatan Indonesia 2020. Jakarta: Kementerian Kesehatan Republik Indonesia.

Mkumbaye, S. I., Wang, C. W., Lyimo, E., Jespersen, J. S., Manjurano, A., Mosha, J., … Lavstsen, T. (2017). The severity of Plasmodium falciparum infection is associated with transcript levels of var genes encoding endothelial protein C receptor-binding P. falciparum erythrocyte membrane protein 1. Infection and Immunity, 85(4), 1-14. doi: 10.1128/IAI.00841-16.

Morrison, H., Young, K., Qureshi, M., Rowe, R. K., & Lifshitz, J. (2017). Quantitative microglia analyses reveal diverse morphologic responses in the rat cortex after diffuse brain injury. Scientific Reports, 7(13211), 1-12. doi: 10.1038/s41598-017-13581-z.

Ndam, N. T., Moussiliou, A., Lavstsen, T., Kamaliddin, C., Jensen, A. T. R., Mama, A., … Deloron, P. (2017). Parasites causing cerebral Falciparum malaria bind multiple endothelial receptors and express EPCR and ICAM-1-binding PfEMP1. Journal of Infectious Diseases, 215(12), 1918-1925. doi: 10.1093/infdis/jix230.

Nishanth, G., & Schlüter, D. (2019). Blood-brain barrier in cerebral malaria: Pathogenesis and therapeutic intervention. Trends in Parasitology, 35(7), 516-528. doi: 10.1016/j.pt.2019.04.010.

Paasila, P. J., Davies, D. S., Kril, J. J., Goldsbury, C., & Sutherland, G. T. (2019). The relationship between the morphological subtypes of microglia and alzheimer’s disease neuropathology. Brain Pathology, 29(6), 726-740. doi: 10.1111/bpa.12717.

Savage, J. C., Carrier, M., & Tremblay, M.-E. (2019). Morphology of microglia across contexts of health and disease. In O. Garaschuk & A. Verkhratsky (Eds.), Methods in molecular biology issue 2034 (pp. 13-26). Humana.

Setyoadji, W. A., Sulistyaningsih, E., & Kusuma, I. F. (2021). Optimized expression condition of CIDRα-PfEMP1 recombinant protein production in Escherichia coli BL21(DE3): A step to develop malaria vaccine candidate. Research Journal of Life Science, 8(1), 15-24. doi: 10.21776/ub.rjls.2021.008.01.3.

Shabani, E., Hanisch, B., Opoka, R. O., Lavstsen, T., & John, C. C. (2017). Plasmodium falciparum EPCR-binding PfEMP1 expression increases with malaria disease severity and is elevated in retinopathy negative cerebral malaria. BMC Medicine, 15(1), 1-14. doi: 10.1186/s12916-017-0945-y.

Shrivastava, S. K., Dalko, E., Delcroix-Genete, D., Herbert, F., Cazenave, P.-A., & Pied, S. (2017). Uptake of parasite-derived vesicles by astrocytes and microglial phagocytosis of infected erythrocytes may drive neuroinflammation in cerebral malaria. Glia, 65(1), 75-92. doi: 10.1002/glia.23075.

Srey, M. T., Taccogna, A., Oksov, Y., Lustigman, S., Tai, P. Y., Acord, J., … Guiliano, D. B. (2020). Vaccination with novel low-molecular weight proteins secreted from Trichinella spiralis inhibits establishment of infection. PLoS Neglected Tropical Diseases, 14(11), 1-19. doi: 10.1371/journal.pntd.0008842.

Sulistyaningsih, E., Armiyanti, Y., & Dewi, R. (2021). The CIDR1α-PfEMP1 sequence from indonesian Plasmodium falciparum and its potential association with the cerebral outcom. MNJ (Malang Neurology Journal), 7(1), 34-39. doi: 10.21776/ub.mnj.2021.007.01.8.

Sulistyaningsih, E., Istinaroh, N., Dewi, R., & Hairrudin. (2022a). Expression and in silico analysis of CIDRα1 recombinant protein from Plasmodium falciparum as a malaria subunit vaccine candidate. Trends in Science, 19(23), 1621.

Sulistyaningsih, E., Wibisono, R., & Dewi, R. (2022b). Leukocyte and IgM responses to immunization with the CIDR1α-PfEMP1 recombinant protein in the wistar rat. Tropical Medicine and Infectious Disease, 7(9), 222. doi: 10.3390/tropicalmed7090222.

Trivedi, S., & Chakravarty, A. (2022). Neurological complications of malaria. Current Neurology and Neuroscience Reports, 22(8), 499-513. doi: 10.1007/s11910-022-01214-6.

Turner, L., Lavstsen, T., Berger, S. S., Wang, C. W., Petersen, J. E. V., Avril, M., … Theander, T. G. (2013). Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature, 498(7455), 502-505. doi: 10.1038/nature12216.

Turner, L., Theander, T. G., & Lavsten, T. (2018). Immunization with recombinant Plasmodium falciparum erythrocyte membrane protein 1 CIDR1 domains induces domain subtype inhibitory antibodies. Infection and Immunity, 86(11), e00435-18. doi: 10.1128/iai.00435-18.

Verkhratsky, A., Ho, M. S., Zorec, R., & Parpura, V. (2019). The concept of neuroglia. Advances in Experimental Medicine and Biology, 1175, 1-13. doi: 10.1007/978-981-13-9913-8_1.

World Health Organization (WHO). (2014). Severe malaria. Tropical Medicine & International Health, 19(Suppl I), 7-131.

World Health Organization (WHO). (2023). World malaria report 2023. Retrieved from https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247(24)00016-8/fulltext#articleInformation.

Widayat, D. (2018). Histologi: Program keahlian teknologi laboratorium medik. Jakarta: Penerbit Buku Kedokteran EGC.

Wiser, M. F. (2023). Knobs, adhesion, and severe Falciparum malaria. Tropical Medicine and Infectious Disease, 8(7). doi: 10.3390/tropicalmed8070353.

Ziebell, J. M., Taylor, S. E., Cao, T., Harrison, J. L., & Lifshitz, J. (2012). Rod microglia: Elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. Journal of Neuroinflammation, 9(247), 1-11. doi: 10.1186/1742-2094-9-247.




DOI: https://doi.org/10.15408/kauniyah.v1i1.38242 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120