Antifungal, Hydrolytic Enzyme Activity, and Identification of Gut Bacterial in Feces of Black Soldier Fly (Hermetia illucens) Larvae

Meirina Nur Maulida, Umi Fatmawati

Abstract


Abstract

Black soldier fly (BSF) (Hermetia illucens) is a type of fly that has larvae called maggots with potential as a waste bioremediation agent. Maggot from BSF has unique digestive characteristics with a diversity of bacteria in it which helps maggot digest organic materials by producing various hydrolytic enzymes. Fecal bacteria in maggots also have potential antifungal activity. This research aimed to identify the hydrolytic and antifungal enzyme activity of maggot fecal bacteria (Hermetia illucencs). Hydrolytic enzyme activity is carried out by measuring the hydrolytic zone in the test medium. The antifungal antagonist test was carried out on Phytophthora sp. using the dual agar culture method. The results of the enzyme activity test showed that isolate MNM 001 had proteolytic enzyme activity, MNM 002 had amylolytic, and proteolytic enzyme activity, and was able to dissolve P elements. MNM 003 had cellulolytic, amylolytic, and proteolytic enzyme activity. From the results of the antagonist test, MNM 001, MNM 002, and MNM 003 have antifungal activity against Phytophthora sp. of the three isolates, isolates MNM 002 and MNM 003 had the best hydrolytic enzyme activity and were identified using the 16S rRNA gene. The results of amplification of the 16S rRNA gene from MNM 002 and MNM 003 indicated that the two isolates were close to the genus Brevibacterium.

Abstrak

Black soldier fly (BSF) (Hermetia illucens) adalah jenis lalat yang memiliki larva disebut maggot dengan potensi sebagai agen bioremediasi sampah. Maggot dari BSF memiliki karakterisitik pencernaan unik dengan keragaman bakteri di dalamnya yang membantu maggot mencerna bahan organik dengan menghasilkan beragam enzim hidrolitik. Bakteri pada feses maggot juga memiliki potensi aktivitas antifungi. Tujuan dari penelitian ini adalah untuk mengidentifikasi aktivitas enzim hidrolitik dan antifungi dari bakteri feses maggot (Hermetia illucens). Aktivitas enzim hidrolitik dilakukan dengan mengukur zona hidrolitik pada medium uji. Uji antagonis antifungi dilakukan terhadap Phytophthora sp. dengan metode dual culture agar. Hasil uji aktivitas enzyme menunjukkan isolat MNM 001 memiliki aktivitas enzim proteolitik, MNM 002 memiliki aktivitas enzim amilolitik, proteolitik, dan mampu melarutkan unsur P. MNM 003 memiliki aktivitas enzim selulolitik, amilolitik, dan proteolitik. Hasil uji antagonis MNM 001, MNM 002, dan MNM 003 memiliki aktivitas antifungi terhadap Phytophthora sp. Ketiga isolat tersebut, isolate MNM 001, MNM 002, dan MNM 003 memiliki aktivitas enzim hidrolitik terbaik dan diidentifikasi menggunakan gen 16S rRNA. Hasil amplifikasi gen 16S rRNA dari MNM 002 dan MNM 003 mengindikasikan bahwa kedua isolat tersebut memiliki kedekatan dengan genus Brevibacterium.


Keywords


Antifungi; Gut bacterial; Hydolitics enzyme; Maggot; Enzim hidrolitik

Full Text:

PDF

References


Alaoui, K., Chafik, Z., Arabi, M., Abouloifa, H., Asehraou, A., Chaoui, J., & Kharmach, E. Z. (2021). In vitro antifungal activity of Lactobacillus against potato Late blight Phytophthora infestans. Materials Today: Proceedings, 45, 7725-7733. doi: 10.1016/j.matpr.2021.03.338.

Bonomo, M. G., Cafaro, C., & Salzano, G. (2015). Genotypic and technological diversity of Brevibacterium linens strains for use as adjunct starter cultures in ‘Pecorino di Filiano’ cheese ripened in two different environments. Folia Microbiologica, 60(1), 61-67. doi: 10.1007/s12223-014-0341-3.

Brasier, C., Scanu, B., Cooke, D., & Jung, T. (2022). Phytophthora: an ancient, historic, biologically and structurally cohesive, and evolutionarily successful generic concept in need of preservation. IMA Fungus, 13(1). doi: 10.1186/s43008-022-00097-z.

Callegari, M., Jucker, C., Fusi, M., Leonardi, M. G., Daffonchio, D., Borin, S., … Crotti, E. (2020). Hydrolytic profile of the culturable gut bacterial community associated with Hermetia illucens. Frontiers in Microbiology, 11. doi: 10.3389/fmicb.2020.01965.

Chatterjee, P., Samaddar, S., Niinemets, Ü., & Sa, T. M. (2018). Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defense and H+ ATPase activity. Microbiological Research, 215, 89-101. doi: 10.1016/j.micres.2018.06.007.

Dantur, K. I., Enrique, R., Welin, B., & Castagnaro, A. P. (2015). Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express, 5(1). doi: 10.1186/s13568-015-0101-z.

Diniz, G. de-F. D., Cota, L. V., Figueiredo, J. E. F., Aguiar, F. M., da Silva, D. D., Lana, U. G. de. P., … de Oliveira-Paiva, C. A. (2022). Antifungal activity of bacterial strains from maize silks against Fusarium verticillioides. Archives of Microbiology, 204(89), 1-13. doi: 10.1007/s00203-021-02726-4.

De Smet, J., Wynants, E., Cos, P., Leen, C., & Campenhout, V. (2018). Microbial community dynamics during the rearing of black soldier fly larvae (Hermetia illucens) and impact on exploitation potential. Applied and Environmental Microbiology, 84(9), e02722-17. doi: 10.1128/AEM.

De Lourenço, D. A, Branco, I., & Choupina, A. (2020). Phytopathogenic oomycetes: A review focusing on Phytophthora cinnamomi and biotechnological approaches. Molecular Biology Reports,47(11), 9179-9188. doi: 10.1007/s11033-020-05911-8.

Dewiyanti, I., Darmawi, D., Muchlisin, Z. A., Helmi, T. Z., Arisa, I. I., Rahmiati, R., & Destri, E. (2022). Cellulase enzyme activity of the bacteria isolated from mangrove ecosystem in Aceh Besar and Banda Aceh. IOP Conference Series: Earth and Environmental Science, 951(1). doi: 10.1088/1755-1315/951/1/012113.

Elhag, O., Zhang, Y., Xiao, X., Cai, M., Zheng, L., Jordan, H. R., … Zhang, J. (2022). Inhibition of zoonotic pathogens naturally found in pig manure by black soldier fly larvae and their intestine bacteria. Insects, 13(1). doi: 10.3390/insects13010066.

Esikova, T. Z., Akatova, E. V., & Solyanikova, I. P. (2023). Epsilon-caprolactam- and nylon oligomer-degrading bacterium Brevibacterium epidermidis BS3: characterization and potential use in bioremediation. Microorganisms, 11(2). doi: 10.3390/microorganisms11020373.

Faizin, R., Athaillah, T., & Munawarah, N. (2021). The prospect of cultivating maggot (black soldier fly larvae) to build the village economy and reduce household waste. Paper presented at the International Conference on Science, Technology, and Modern Society (ICSTMS 2020). Retrieved from https://www.researchgate.net/publication/354685852_The_Prospect_of_Cultivating_Maggot_Black_Soldier_Fly_Larvae_to_Build_the_Village_Economy_and_Reduce_Household_Waste

Ferbiyanto, A., Rusmana, I., & Raffiudin, R. (2015). Characterization and identification of cellulolytic bacteria from the gut of worker Macrotermes gilvus. HAYATI Journal of Biosciences, 22(4), 197-200. doi: 10.1016/j.hjb.2015.07.001.

Fitriana, N., & Asri, M. T., (2022). Aktivitas proteolitik pada enzim protease dari bakteri rhizosphere tanaman kedelai (Glycine max L.) di Trenggalek. LenteraBio: Berkala Ilmiah Biologi, 11(1), 144-152.

Forquin-Gomez, M. P., Weimer, B. C., Sorieul, L., Kalinowski, J., & Vallaeys, T. (2014). The family Brevibacteriaceae. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The prokaryotes: Actinobacteria (pp. 141-153). Berlin-Heidelberg: Springer-Verlag.

Gandotra, S., Bhuyan, P. M., Gogoi, D. K., Kumar, A., & Subramanian, S. (2018). Screening of nutritionally important gut bacteria from the Lepidopteran insects through qualitative enzyme assays. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 88(1), 329-337. doi: 10.1007/s40011-016-0762-7.

Handayani, D., Naldi, A., Larasati, R. R. N. P., Khaerunnisa, N., & Budiatmaka, D. D. (2021). Management of increasing economic value of organic waste with maggot cultivation. IOP Conference Series: Earth and Environmental Science, 716(1). doi: 10.1088/1755-1315/716/1/012026.

Hanim, A. M., Purnamasari, W., Prasnowo, A., Wulandari, R., Aziz, S., & Indrasari, M. (2021). Maggot BSF cultivation development strategy as economic resilience during a pandemic. SINERGI: Jurnal Ilmiah Ilmu Managemen, 11(2), 8-21. doi: 10.25139/sng.v11i2.4153.

Hardham, A. R. (2005). Phytophthora cinnamomi. Molecular Plant Pathology, 6(6), 589-604. doi: 10.1111/j.1364-3703.2005.00308.x.

Insam, H., & de Bertoldi. (2007). Microbiology of the composting process. In L. Z. Diaz, M. de Bertoldi, W. Bidlingmaier, & E. Stentiford (Eds.), Waste management series (pp. 25-48). Elsevier.

Nurmaliatik, N., Inti, M., Nurhidayat, E., Anggraini, D. J., Hidayat, N., Nurhuda, M., ... Maryani, Y. (2021). Studi pengaruh pemberian pupuk kandang dan guano fosfat terhadap serapan kalium tanaman kacang hijau (Vigna radiata L.). Jurnal Pertanian Agros, 23(1), 44-52.

Jing, T. Z., Qi, F. H., & Wang, Z. Y. (2020). Most dominant roles of insect gut bacteria: Digestion, detoxification, or essential nutrient provision? Microbiome, 8(1). doi: 10.1186/s40168-020-00823-y.

Kim, J. Y., & Kim, B. S. (2020). Plant growth promotion and biocontrol potential of various phytopathogenic fungi using gut microbes of Allomyrina dichotoma larva. Research in Plant Disease, 26(4), 210-221. doi: 10.5423/RPD.2020.26.4.210.

Liswani, Y., Nurbailis., & Busniah,M. (2018). Eksplorasi cendawan endofit dan potensinya untuk pengendalian Phytophthora palmivora penyebab penyakit busuk buah kakao. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, 4(2). doi: 10.13057/psnmbi/m040223.

Liu, C., Wang, C., & Yao, H. (2019). Comprehensive resource utilization of waste using the black soldier fly (Hermetia illucens (L.)) (Diptera: Stratiomyidae). Animals, 9(349). doi: 10.3390/ani9060349.

Lv, C., Gu, T., Ma, R., Yao, W., Huang, Y., Gu, J., & Zhao, G. (2021). Biochemical characterization of a GH19 chitinase from Streptomyces alfalfa and its applications in crystalline chitin conversion and biocontrol. International Journal of Biological Macromolecules, 167, 193-201. doi: 10.1016/j.ijbiomac.2020.11.178.

Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J., & Wade, W. G. (1998). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology, 64(2), 795-799.

Masrukhin., Putri, A. L., Sulistiyani, T. R., Ilyas, M., Purnaningsih, I., Saskiawan, I., & Niam, M. Y. (2021). Antifungal activity of bacterial isolates from straw mushroom cultivation medium against phytopathogenic fungi. Journal of Tropical Biodiversity and Biotechnology, 6(1). doi: 10.22146/jtbb.59235.

Mounier, J., Monnet, C., Jacques, N., Antoinette, A., & Irlinger, F. (2009). Assessment of the microbial diversity at the surface of Livarot cheese using culture-dependent and independent approaches. International Journal of Food Microbiology, 133(1-2), 31-37. doi: 10.1016/j.ijfoodmicro.2009.04.020.

Murtiyaningsih, H., & Hazmi, M. (2017). Isolation and cellulase enzyme activities assays in cellulolytic bacteria origin from soil waste. 135 Agritrop, 15(2).

Nafisah, H., Pujiyanto, S., & Raharjo, B. (2017). Isolasi dan uji aktivitas kitinase isolat bakteri dari kawasan geotermal Dieng. Bioma: Berkala Ilmiah Biologi, 19(1), 22-29.

Nguyen, T. T. X., Tomberlin, J. K., & Vanlaerhoven, S. (2015). The ability of black soldier fly (Diptera: Stratiomyidae) larvae to recycle food waste. Environmental Entomology, 44(2), 406-410. doi: 10.1093/ee/nvv002.

Park, S. I., Kim, J. W., & Yoe, S. M. (2015). Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. Developmental and Comparative Immunology, 52(1), 98-106. doi: 10.1016/j.dci.2015.04.018.

Paulsen, S. S., Andersen, B., Gram, L., & MacHado, H. (2016). Biological potential of chitinolytic marine bacteria. Marine Drugs, 14(12). doi: 10.3390/md14120230.

Pendyurin, E. A., Rybina, S. Y., & Smolenskaya, L. M. (2021). Research of black soldier flies (Hermetia illucens) maggots zoo compost's influence on soil fertility. In S. V. Klyuev, & A.V. Klyuev (Eds.), Proceedings of the International Conference Industrial and Civil Construction, (pp. 42-49).

Pham, V. H. T., Kim, J., Chang, S., & Chung, W. (2021). Investigation of lipolytic-secreting bacteria from an artificially polluted soil using a modified culture method and optimization of their lipase production. Microorganisms, 9(12). doi: 10.3390/microorganisms9122590.

Popa, R., & Green, T. (2012). Biology and ecology of the black soldier fly. Lake Oswego, Oregon: DipTerra LCC.

Scott, P., Badder, M. K. F., Burgess, T., Hardy, G., & Williams, N. (2019). Global biogeography and invasion risk of the plant pathogen genus Phytophthora. Environmental Science and Policy, 101, 175-182. doi: 10.1016/j.envsci.2019.08.020.

Setia, I. N., & Suharjono . (2015). Diversitas dan uji potensi bakteri kitinolitik dari limbah udang. Jurnal Biotropika, 3(2), 95-98

Setiawan, A., Arimurti, S., Senjarini, K., & Biologi, S. J. (2016). Aktivitas proteolitik dan fibrinolitik isolat bakteri dari perairan pantai papuma Kabupaten Jember. Berkala Sainstek, 4(1), 1-4. doi: 10.19184/bst.v4i1.4457.

Setyati, W. A., Habibi, A. S., Subagiyo, A., Ridlo, N. S., & Pramesti, R. (2016). Skrining dan seleksi bakteri simbion spons penghasil enzim ekstraseluler sebagai agen bioremediasi bahan organik dan biokontrol Vibriosis pada budidaya udang. Jurnal Kelautan Tropis Maret, 19(1), 11-20.

Sukmadewi, D. K. T., Anas, I., Widyastuti, R., & Cintaresmini, A. (2017). Uji fitopatogenitas, hemolisis serta kemampuan mikrob dalam melarutkan fosfat dan kalium. Jurnal Ilmu Tanah dan Lingkungan, 19(2), 68-73. doi 10.29244/jitl.19.2.68-73.

Švecová, E., Colla, G., & Crinò, P. (2017). Antifungal activity of Boerhavia diffusa L. extracts against Phytophthora spp. in tomato and pepper. European Journal of Plant Pathology, 148(1), 27-34. doi: 10.1007/s10658-016-1065-9.

Tegtmeier, D., Hurka, S., Mihajlovic, S., Bodenschatz, M., Schlimbach, S., & Vilcinskas, A. (2021). Culture-independent and culture-dependent characterization of the black soldier fly gut microbiome reveals a large proportion of culturable bacteria with potential for industrial applications. Microorganisms, 9(8). doi: 10.3390/microorganisms9081642.

Utami, U., & Mujahidin, A. (2020). Uji antagonisme beberapa fungi endofit pada tanaman kentang terhadap Fusarium oxysporum secara in vitro. Jurnal Riset Biologi Dan Aplikasinya, 2(1), 18-25.

Wang, Y., Wang, Z. J., Huang, J. C., Chachar, A., Zhou, C., & He, S. (2022). Bioremediation of selenium-contaminated soil using earthworm Eisenia fetida: Effects of gut bacteria in feces on the soil microbiome. Chemosphere, 300. doi 10.1016/j.chemosphere.2022.134544.

Wu, E. J., Wang, Y. P., Shen, L. L., Yahuza, L., Tian, J. C., Yang, L. N., … Zhan, J. (2019). Strategies of Phytophthora infestans adaptation to local UV radiation conditions. Evolutionary Applications, 12(3), 415-424. doi: 10.1111/eva.12722.

Wulandari, D., & Purwaningsih D., (2019). Morphological, biochemical, and molecular identification and characterization of amylolytic bacteria in tubers of Colocasia esculenta. Bioteknologi & Biosains Indonesia, 6(2), 247-258.

Yang, B., Wang, Y., & Qian, P. Y. (2016). Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics, 17(1). doi: 10.1186/s12859-016-0992-y.

Yang, C., Ma, S., Li, F., Zheng, L., Tomberlin, J. K., Yu, Z., … Cai, M. (2022). Characteristics and mechanisms of ciprofloxacin degradation by black soldier fly larvae combined with associated intestinal microorganisms. Science of the Total Environment, 811. doi: 10.1016/j.scitotenv.2021.151371.

Zhang, F., Sun, X. X., Zhang, X. C., Zhang, S., Lu, J., Xia, Y. M., … Wang, X. J. (2018). The interactions between gut microbiota and entomopathogenic fungi: a potential approach for biological control of Blattella germanica (L.). Pest Management Science, 74(2), 438-447. doi: 10.1002/ps.4726.

Zhineng, Y., Ying, M., Bingjie, T., Rouxian, Z., & Qiang, Z. (2021). Intestinal microbiota and functional characteristics of black soldier fly larvae (Hermetia illucens). Annals of Microbiology, 71(1). doi: 10.1186/s13213-021-01626-8.




DOI: https://doi.org/10.15408/kauniyah.v1i1.37354 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120