Short Communication: Taxonomic Profiling of Bacteria in The Bio-Enzyme That Produced From Orange Fruit Waste
Abstract
Abstract
Fruit wastes are reported as among the main contributors to food waste production. They have an impact on the environment so they need to be treated. To reduce the negative effects, fruit wastes must be treated before they are released into the environment. Meanwhile, the fruit wastes have been reported about their functional properties and nutritional as bio-enzyme. This preliminary study aimed to provide information about metagenome bacteria of bio-enzymes from orange fruit wastes treated with different concentrations of probiotics in anaerobic fermentation. Bio-enzyme was a fermented solution made from a mixture of 15 g brown sugar: 5 kg orange fruit waste: and 12 L water. The fermentation process was carried out for 1 month and then the bioenzyme sample was taken 1 L for metagenome analysis. The metagenomic analysis was carried out using the next-generation sequencing (NGS) method for the 16S rRNA gene of bacteria by amplicon full-length sequencing with nanopore sequencing. In this research, phylum Pseudomonadota (Proteobacteria), class Betaproteobacteria, order Burkholderiales, and family Comamonadaceae were the predominant bacterial group of the bio-enzyme that produced from orange fruit waste. Identification of bacterial species in the next research becomes important to understand the role of bacterial species in the biochemical metabolism of bio-enzyme products from orange fruit waste.
Abstrak
Limbah buah-buahan dilaporkan sebagai salah satu penyumbang utama produksi limbah makanan. Limbah buah mempunyai dampak terhadap lingkungan sehingga perlu ditangani. Limbah buah harus diolah terlebih dahulu untuk mengurangi dampak negatifnya sebelum dibuang ke lingkungan. Sementara itu, limbah buah telah dilaporkan mengenai sifat fungsional dan nutrisinya sebagai bio-enzim. Penelitian awal ini bertujuan untuk memberikan informasi mengenai diversitas metagenom bakteri yang terdapat di produk bioenzim yang diproduksi dari limbah buah jeruk yang diberi perlakuan konsentrasi probiotik berbeda dalam fermentasi anaerobik. Bio-enzim merupakan larutan fermentasi yang terbuat dari campuran 15 g gula merah : 5 kg limbah buah jeruk : 12 L air. Proses fermentasi dilakukan selama 1 bulan dan kemudian sampel bioenzim diambil sebanyak 1 L untuk dianalisis metagenom. Analisis metagenomik bakteri dilakukan dengan menggunakan metode next-generation sequencing (NGS) untuk analisis 16S rRNA gene melalui sekuensing amplikon dengan nanopore sequencing. Pada penelitian ini, keberadaan bakteri pada bio-enzim yang diproduksi dari limbah buah jeruk. Filum Pseudomonadota (Proteobacteria), kelas Betaproteobacteria, ordo Burkholderiales, dan famili Comamonadaceae merupakan kelompok bakteri yang dominan di bio-enzim yang diproduksi dari limbah buah jeruk. Identifikasi spesies bakteri pada penelitian selanjutnya menjadi penting untuk mengetahui peranan spesies-spesies bakteri di metabolisme biokimiawi dari produk bio-enzim dari limbah buah jeruk.
Keywords
Full Text:
PDFReferences
Akram, S., Ahmed, A., He, P., He, P., Liu, Y., Wu, Y., … He, Y. (2023). Uniting the role of endophytic fungi against plant pathogens and their interaction. Journal of Fungi, 9(1), 72.
An, N., Wang C., Dou, X., Liu, X., Wu, J., & Cheng, Y. (2022). Comparison of 16S rDNA amplicon sequencing with the culture method for diagnosing causative pathogens in bacterial corneal infections. Translational Vision Science & Technology, 11(2), 29.
Ashraf, H. J., Aguila, R. L. C., Akutse, K. S., Ilyas, M., Abbasi, A., Li X., & Wang, L. (2022). Comparative microbiome analysis of Diaphorina citri and its associated parasitoids Tamarixia radiata and Diaphorencyrtus aligarhensis reveals Wolbachia as a dominant endosymbiont. Environmental Microbiology, 24(3), 1638-1652.
Bahram, M., Anslan, S., Hildebrand, F., Bork, P., & Tedersoo, L. (2018). Newly designed 16S rRNA metabarcoding primers amplify divers and novel archaeal taxa from the environment. Environmental Microbiology Reports, 11(4), 487-494.
Benny, N., Shams, R., Dash, K. K., Pandey, V. K., & Bashir, O. (2023). Recent trends in the utilization of citrus fruits in the production of eco-enzyme. Journal of Agriculture and Food Research, 13, 100657.
Bollag, J. M. (2008). Interactions of soil components and microorganisms and their effects on soil remediation. Journal of Soil Science and Plant Nutrition, 8, 28-32.
Breijyeh, Z., Jubeh, B., & Karaman, R. (2020). Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules, 25(6), 1340.
Chen, F., Wang, X., Qiu, G., Liu, H., Tan, Y., Cheng, B., & Han, G. (2022). Establishment and validation of a new analysis strategy for the study of plant endophytic microorganisms. International Journal of Molecular Sciences, 23(22), 14223.
Chen, J., Gu, B., Royer, R. A., & Burgos, W. D. (2003). The roles of natural organic matter in chemical and microbial reduction of ferric iron. Science of the Total Environment, 307(1-3), 167-178.
Costa, M., & Weese, J. S. (2019). Methods and basic concepts for microbiota assessment. The Veterinary Journal, 249, 10-15.
Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., … Relman, D. A. (2005). Diversity of the human intestinal microbial flora. Science, 308(5728), 1635-1638.
Fadlilla, T., Budiastuti, M. S., & Rosariastuti, M. R. (2023). The potential of fruit and vegetable waste as eco-enzyme fertilizer for plants. Jurnal Penelitian Pendidikan IPA, 9(4), 2191-2200.
Galintin, O., Rasit, N., & Hamzah, S. (2021). Production and characterization of eco enzyme produced from fruit and vegetable wastes and its influence on the aquaculture sludge. Biointerface Research in Applied Chemistry, 11(3), 10205-10214.
Kerkar, S. S., & Salvi, S. S. (2020). Application of eco-enzyme for domestic wastewater treatment. International Journal for Research in Engineering Application and Management, 5(11), 114-116.
Khan, S. T., Horiba, Y., Yamamoto, M., & Hiraishi, A. (2002). Members of the family Comamonadaceae as primary poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach. Applied and Environmental Microbiology, 68(7), 3206-3214.
Klann, J., McHenry, A., Montelongo, C., & Goffredi, S. K. (2016). Decomposition of plant‐sourced carbon compounds by heterotrophic betaproteobacteria isolated from a tropical Costa Rican bromeliad. Microbiology Open, 5(3), 479-489.
Kochetkova, T. V., Grabarnik, I. P., Klyukina, A. A., Zayulina, K. S., Gavirova, L. A., Shcherbakova, P. A., ... Elcheninov, A. G. (2023). The bacterial microbiota of artisanal cheeses from the Northern Caucasus. Fermentation, 9(8), 719.
Kurniawan, A., Oedjijono, O., Tamad, T., & Sulaeman, U. (2019). Short communication: the pattern of heavy metals distribution in time chronosequence of ex-tin mining ponds in Bangka Regency, Indonesia. Indonesian Journal of Chemistry, 9(1), 254-261.
Kurniawan, A., Kurniawan, A., & Robin, R. (2023). Interaction of organisms in abandoned tin mining pits: Perspective of life in acid mine drainage environment. Jurnal Ilmu Lingkungan, 21(1), 159-171.
Kurniawan, A., Mustikasari, D., Kurniawan, A., Muntoro, M., Setiadi, J., & Kholishah, N. A. (2024). The preliminary study about the physicochemical properties of bio-enzyme produced from orange fruit waste treated with different concentrations of probiotics. Jurnal Ilmu Lingkungan, 22(4), 861-867.
Lakra, P., Saini, S. K., & Saini, A. (2022). Synthesis, physio-chemical analysis, and applications of bio-enzymes based on fruit and vegetable peels. Journal of Emerging Technologies and Innovative Research, 9(9), a670-a680.
Leão, I., de Carvalho, T. B., Henriques, V., Ferreira, C., Sampaio-Maia, B., & Manaia, C. M. (2023). Pseudomonadota in the oral cavity: A glimpse into the environment-human nexus. Applied Microbiology and Biotechnology, 107(2-3), 517-534.
Liu, Q., Lei, X., Li, J., Chu, L., Wang, F., Shan, H., & Hu, F. (2023). Microbial communities and nitrogen cycling in Litopenaeus vannamei and Mercenaria mercenaria polyculture ponds. Aquaculture Reports, 33, 101769.
Lu, X., Oehmen, A., Zhao, J., Duan, H., Yuan, Z., & Ye, L. (2023). Insights on biological phosphorus removal with partial nitrification in single sludge system via sidestream free ammonia and free nitrous acid dosing. Science of the Total Environment, 895, 165174.
Lucarini, M., Durazzo, A., Bernini, R., Campo, M., Vita, C., Souto, E. B., ... Romani, A. (2021). Fruit wastes as a valuable source of value-added compounds: A collaborative perspective. Molecules, 26(21), 6338.
Madsen, E. L. (2011). Microorganisms and their roles in fundamental biogeochemical cycles. Current Opinion in Biotechnology, 22(3), 456-464.
Mekasha, S., & Linke, D. (2021). Secretion systems in gram-negative bacterial fish pathogens. Frontiers in Microbiology, 12, 782673.
Mellado, M., & Vera, J. (2021). Microorganisms that participate in biochemical cycles in wetlands. Canadian Journal of Microbiology, 67(11), 771-788.
Meng, S., Peng, T., Liu, X., Wang, H., Huang, T., Gu, J. D., & Hu, Z. (2022). Ecological role of bacteria involved in the biogeochemical cycles of mangroves based on functional genes detected through GeoChip 5.0. mSphere, 7(1), e0093621.
Mousavi, S. M., Hashemi, S. A., Moezzi, I., Ravan, N., Gholami, A., Lai, C. W., … Behbudi, G. (2021). Recent advances in enzymes for the bioremediation of pollutants. Biochemistry Research International, 2021(4), 1-12. doi: 10.1155/2021/5599204.
Navgire, G. S., Goel, N., Sawhney, G., Sharma, M., Kaushik, P., Mohanta, Y. K., … Al-Harrasi, A. (2022). Analysis and interpretation of metagenomics data: An approach. Biological Procedures Online, 24, 18.
Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D., & Bertilsson, S. (2011). A guide to the natural history of freshwater lake bacteria. Microbiology and Molecular Biology Reviews, 75(1), 14-49.
Nigam, P. S. (2013). Microbial enzymes with special characteristics for biotechnological applications. Biomolecules, 3(3), 597-611.
Nirmal, N. P., Khanashyam, A. C., Mundanat, A. S., Shah, K., Babu, K. S., Thorakkattu, P., ... Pandiselvam, R. (2023). Valorization of fruit waste for bioactive compounds and their applications in the food industry. Foods, 12(3), 556.
Patel, M., Chauhan, J., & Maitreya, B. (2023). Effect of bio-enzyme on biochemicals of fenugreek leaves. International Association of Biologicals and Computational Digest, 2(1), 75-81.
Pękala-Safińska, A. (2018). Contemporary threats of bacterial infections in freshwater fish. Journal of Veterinary Research, 62(3), 261-267.
Penmatsa, B., Sekhar, D. C., Diwakar, B. S., & Nagalakshmi, T. V. (2019). Effect of bio-enzyme in the treatment of freshwater bodies. International Journal of Recent Technology and Engineering, 8(1), 308-310.
Plazzotta, S., Manzocco, L., & Nicoli, M. C. (2017). Fruit and vegetable waste management and the challenge of fresh-cut salad. Trends in food science & technology, 63, 51-59.
Purbalisa, W., Hendrayanti, D., & Yusuf, W. A. (2022). Biodiversity, roles, and potency of bacteria in agricultural land. Jurnal Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan, 19(3), 520-531.
Qin, Y., Hou J., Deng, M., Liu, Q., Wu, C., Ji, Y., & He, X. (2016). Bacterial abundance and diversity in pond water supplied with different feeds. Scientific reports, 6(1), 35232.
Rasit, N., Hwe, F. L., & Ab, K. G. W. A. W. (2019). Production and characterization of eco enzyme produced from tomato and orange wastes and its influence on the aquaculture sludge. International Journal of Civil Engineering and Technology, 10(3), 967-980.
Rosenberg, E., & Zilber-Rosenberg, I. (2022). Special issue: The role of microorganisms in the evolution of animals and plants. Microorganisms, 10(2), 250.
Shen, Z., Shang, Z., Wang, F., Liang, Y., Zou, Y., & Liu, F. (2022). Bacterial diversity in surface sediments of collapsed lakes in Huaibei, China. Scientific Reports, 12(1), 15784.
Teira, E., Martínez-García, S., Lønborg, C., & Álvarez-Salgado, X. A. (2011). Betaproteobacteria growth and nitrification rates during long-term natural dissolved organic matter decomposition experiments. Aquatic microbial ecology, 63(1), 19-27.
Vaz-Moreira, I., Nunes, O. C., & Manaia, C. M. (2017). Ubiquitous and persistent Proteobacteria and other gram-negative bacteria in drinking water. Science of the Total Environment, 586, 1141-1149.
Vitorino, L. C., & Bessa, L. A. (2018). Microbial diversity: The gap between the estimated and the known. Diversity, 10(2), 46.
Weisheng, L., Haiquan, W., Jiapeng, H., Xueting, H., & Yinghui, X. (2015). Bioremediation of heavy metal-contaminated soil by enzymes. Chinese Journal of Environmental Engineering, 9(12), 6147-6153.
Zheng, L. Y., Liu, N. H., Zhong, S., Yu, Y., Zhang, X. Y., Qin, Q. L., … Li, P. Y. (2022). Diaminopimelic acid metabolism by Pseudomonadota in the ocean. Microbiology Spectrum, 10(5), e0069122.
Zhou, X., Chen, X., Qi, X., Zeng, Y., Guo, X., Zhuang, G., & Ma, A. (2023). Soil bacterial communities associated with multi-nutrient cycling under long-term warming in the alpine meadow. Frontiers in Microbiology, 14, 1136187.
Zhu, Y., Luan, Y., Zhao, Y., Liu, J., Duan, Z., & Ruan, R. (2023). Current technologies and uses for fruit and vegetable wastes in a sustainable system: A review. Foods, 12(10), 1949.
DOI: https://doi.org/10.15408/kauniyah.v1i1.36711 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
This work is licensed under a CC-BY- SA.
Indexed By:
  Â