PENGARUH PENAMBAHAN DL-METIONIN DALAM MEDIA KULTIVASI TERHADAP PRODUKSI SEFALOSPORIN C DARI KAPANG Acremonium chrysogenum CB2/11/1
Abstract
Abstrak
Sefalosporin merupakan antibiotik β-laktam yang mempunyai efektivitas dalam melawan bakteri Gram positif dan negatif. Antibiotik ini dihasilkan oleh kapang Acremonium chrysogenum. Media kultivasi yang optimum dapat meningkatkan produksi sefalosporin. Komposisi media kultivasi yang paling berpengaruh adalah induser. Induser dapat meningkatkan produksi sefalosporin dari kapang A. chrysogenum. Penelitian ini bertujuan untuk melihat pengaruh metionin dalam media produksi sefalosporin dari kapang A. chrysogenum CB 2/11/1. Inokulum A.chrysogenum dibiakkan pada media kultivasi sefalosporin tanpa penambahan DL-metionin dan pada media kultivasi dengan penambahan DL-metionin. Penentuan level konsentrasi DL-metionin dirancang menggunakan Rancangan Acak Lengkap 1 faktor pada tiap-tiap proses penentuan nutrisi. Data yang diperoleh dari masing-masing perlakuan dianalisis sidik ragam pada taraf nyata 5%. Hasil penelitian menunjukkan bahwa metionin sebagai induser dapat meningkatkan produksi sefalosporin sebesar 1,2 kali dibandingkan dengan media kultivasi yang tanpa menggunakan metionin. Pada pengujian level konsentrasi DL-metionin menunjukkan bahwa konsentrasi terbaik metionin adalah 0,4 g/L menghasilkan sefalosporin sebesar 3989 mg/L.
Abstract
Cephalosporins is a β-lactam antibiotic that has effectiveness against Gram-positive and negative bacteria. This antibiotic is produced by Acremonium chrysogenum. Optimum cultivation medium can increase the production of cephalosporins. The most influential cultivation medium composition is an inducer that increases production of cephalosporin from the fungi. The objective of this study was to investigate the influence of methionine in the cephalosporin production medium containing A. chrysogenum CB 2/11/1, with DL-methionine as the inducer. The inoculum was cultivated in the cultivation media containing cephalosporins without the addition of DL-metionin and in the media with the addition of DL-metionin. The result showed that the DL-methionine increased cephalosporins production 1.2 fold compared to those without using methionine. The assay on the concentration level of DL-methionine showed the best concentration methionine of 0.4 g/L produced cephalosporin by 3989 mg/L.
Keywords
Full Text:
PDFReferences
Agbor, V. O., Ma’ori, L., & Opajobi, S. O. (2011). Bacterial resistance to cephalosporins in clinical isolates in Jos University Teaching Hospital (JUTH). New York Science, 22(4), 9-13.
Bok, J. W., Noordermeer, D., Kale, S. P. & Keller, N. P. (2011). Secondary metabolic gene cluster silencing in Aspergillus nidulans. Molecular Microbiology, 2(61), 1636-1645.
Brakhage, A. A. (2012). Regulation of fungal secondary metabolism. Nature Microbiology, 89, 15-21.
Cao, K., Altaba, H., & Kalama, K. (2013). Nitrogen source governs the pattern of growth and prostinamycein production in Streptomyces pristinaespiralis. Microbiology, 147, 2447-2459.
Cheng, S., Rhee, E. P., Sinha, S., Florez, J. C., Magnusson, M., Pierce, K. A, Souza, A. L., Clish, C. B., & Gerszten, R. E. (2013). α-Aminoadipic acid is a biomarker for diabetes risk. Clinicical of medicine, 10, 4309-4317.
Cuadra, T. Fernandez, F. J., Tomasini, A., & Barrios, J. G. (2008). Influence of pH regulation and nutrient content oncephalosporin C production in solid-state fermentation by Acremonium chrysogenum C10. Applied Microbiology, 87, 216-220.
Duan, S., Guoqiang, Y., Yanli, Z., Hongfei, L., Weijia, N., & Meina, S. (2011). Enhanced cephalosporin C production with a combinational ammonium sulfateand DO-Stat based soybean oil feeding strategy. Biochemical Engi neering, 6, 11–10. doi:10.1016/2011. 11.011.
Kar, B., Banarjee, R., & Ramly, G. (2010). Biosynthesis of tannin acyl hydrolase from tannin-rich forest residue under different fermentation conditions. Indian Microbiology and Biotechnology, 25, 29-38.
Kresse, H., Belsey, M. J., & Rovini, H. (2007). The antibacterial drugs market. Nature Review Drug and Discovery, 6, 19-20.
Lee, M. S., Lim, J. S., Kim, C. H., Kyung, K., & Suk, I. H. (2010). Effect of nutrient and culture conditions on morphology in the seed culture of Acremonnium chrysogenum ATCC 20339. Biotechnology and Bioprocess Enginering, 6, 156-160.
Lu, W., Kimball, E., & Rabinowitz, J. D. (2006). A high-performance liquid chromatography mass spectrometry method forquantitation of nitrogen-containing intracellular metabolites. Mass Spectrometry, 7, 37-50.
Mandenius, C. F., Brundin. A., & Lepholin. G. (2008). Bioprocess optimization using design of experiment methodology. Biotechnology, 24, 1191-1203.
Manfaati, R. (2010). Kinetika dan variabel optimum fermentasi asam laktat dengan media campuran tepung tapioka dan limbah cair tahu oleh Rhizopus oryzae (Tesis). Semarang. Universitas Diponegoro. 29-30.
Martian, J. F. (2012). Unraveling the metionin cephalosporin puzzle in Acremonium chrysogenum. Trends Biotechnology, 20, 502-507.
Mochtarani. B., Ramin. K., Mohammad H. A., & Siavash D. M. (2010). Partitioning of Ciprofloxacin in aqueous two-phase system of poly (ethylene glycol) and sodium sulphate. Biochemistry and Enginering, 38, 241-247.
Muniz, C., Tania, E. C., Gabriela, R., & Francisco, E. (2007). Penicllin and cephalosporin production: A Historical Perspective. Applied Microbiology, 49, 88-98.
Naganagouda. K., Alneysar. H., & Mulimani. A. H. (2008). Aqueous two-phase extraction (ATPE): An attractive and economically viable technology for downstream processing of Aspergillus oryzae [alpha]-galactosidase. Process Biochemistry, 43, 1293-1299.
Ngili Y. (2009). Biokimia, Metabolisme dan Bioenergitika. Yogyakarta. Graha Ilmu. 86-89.
Ooijkas, L. P., Weber, F. J., Buitelaar, R. M., Tramper, J., & Rinzema, A. (2010). Defined media and inert supports: their potential as solid-state fermentation production systems. Trends Biotechnology, 18, 356-360.
Pichichero, M. E. (2006). Cephalosporins can beprescribed safely for Penicillin–allergic patients. Family practice, 55e, 106-12.
Riadi, M. M. (2007). Production of glucoamylase by marine endophytic Aspergillus sp. Jan-25 under optimized solid-state fermentation conditions on agro residues. Australian Basic and Applied Science, 6, 41-54.
Ruiz, B., Adan, C., & Angela, F. (2010). Production of microbial secondary metabolites: Regulation by the carbon source. Microbiology, 36, 146-167.
Schmitt, E. K., Hoff, B., Kuck, U. (2004). Regulation of sefalosporin biosynthesis. Advance Biochemistry and Biotechnology, 88, 1-43.
Srivastava, P., Mishra, P., & Kundu, S. (2006). Process strategies for cephalosporin c fermentation. Science Industrial Research, 65, 599-602.
Sokolova, L. I., Chernyaev, A .P., & Chera, E. T. (2012). Reversed-phase HPLC determination of antibiotics of the cephalosporin series in biological objects. Pharmacy and Chemistry, 36, 5-10.
Wiemann, P. (2011). FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation and secondary metabolism. Molecular Microbiology, 24, 78-82. doi: 10.1111/j. 1365 2958. 07263.
Yin, W. & Keller, N. P. (2011). Transcriptional regulatory elements in fungal secondary metabolism. Journal of Microbiology. 49, 329-339.
Zusuki H, Chinatsu M, Ishihara S, & Hidehiko K. (2009). A Single Amino Acid Substitution Converts g-Glutamyltrans-peptidase to a Class IV Cephalosporin Acylase (Glutaryl-7-Aminocephalospo-ranic Acid Acylase). Applied and environmentals microbiology, 17, 289-291. doi: 10.1128/EM.70.10.6324-6328.
DOI: https://doi.org/10.15408/kauniyah.v10i1.3595 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
This work is licensed under a CC-BY- SA.
Indexed By:
  Â