A Transgenerational Effects of Oil Supplemented Diets on Fruit Flies (Drosophila melanogaster) Progenies
Abstract
Abstract
The causes of obesity are multifactorial, one of which is the parental diet. Fruit fly (Drosophila melanogaster) has homologous genes with humans and is a potential model organism for research on human diseases. This study aims to examine the transgenerational effects of a modified high-fat diet on the number of progenies, sex ratio, and body weight in eight generations of fruit flies. Four types of diets consisted of different fat compositions were used banana, cornmeal, cornmeal + 3% virgin coconut oil (VCO), and cornmeal + 3% palm oil. Data were analyzed using SPSS with ANOVA and DMRT post hoc analysis. Results showed significant differences (P <0.05) in the number of progenies between the diet without oil and with added oil. A higher number of progenies were found in the diet without oil with an average of 85 flies (banana diet) and 85.04 flies (cornmeal diet) compared to the results in the oil diet with 19 flies (cornmeal + 3% VCO) and 76.67 flies (cornmeal + 3% palm oil)The sex ratio and the body weight were not significantly different between each diet, suggesting that there are other factors involved. There were significant differences between the early and late generations for number of progenies and body weight, but not for sex ratio. The VCO was difficult to mix in the media so palm oil has the potential to be used for further investigations to find a better formula for high-fat diet food sources in an obesity study using fruit flies.
Abstrak
Penyebab terjadinya obesitas bersifat multifaktorial, salah satunya adalah pola makan orang tua. Lalat buah (Drosophila melanogaster) memiliki gen yang homolog dengan manusia dan merupakan organisme model yang potensial untuk penelitian penyakit manusia. Penelitian ini bertujuan untuk menguji pengaruh transgenerasi pola makan tinggi lemak yang dimodifikasi terhadap jumlah keturunan, rasio jenis kelamin, dan berat badan pada delapan generasi lalat buah. Empat jenis pakan dengan komposisi lemak berbeda digunakan yaitu pisang, tepung jagung, tepung jagung + 3% Virgin coconut oil(VCO) dan tepung jagung + 3% minyak sawit. Data dianalisis menggunakan SPSS dengan analisis post hoc ANOVA dan DMRT. Hasil penelitian menunjukkan perbedaan yang signifikan (P <0,05) pada jumlah keturunan, khususnya antara diet tanpa minyak dengan diet dengan minyak. Jumlah progeni yang lebih banyak terdapat pada diet tanpa minyak dengan rata-rata 85 lalat (diet pisang) dan 85,04 lalat (diet tepung jagung) dibandingkan dengan hasil pada diet minyak dengan 19 lalat (tepung jagung + 3% VCO) dan 76,67 lalat (tepung jagung + 3% minyak sawit). Rasio jenis kelamin dan berat badan tidak berbeda secara signifikan antara masing-masing pola makan, hal ini menunjukkan bahwa ada faktor lain yang terlibat. Terdapat perbedaan yang signifikan antara generasi awal dan akhir dalam hal jumlah keturunan dan berat badan, namun tidak untuk rasio jenis kelamin. VCO sulit untuk dicampurkan dalam media sehingga minyak sawit berpotensi digunakan untuk penelitian lebih lanjut untuk menemukan formula sumber makanan diet tinggi lemak yang lebih baik dalam studi obesitas menggunakan lalat buah.
Keywords
Full Text:
PDFReferences
Anwar, C., & Salima, R. (2016). Perubahan rendemen dan mutu virgin coconut oil (vco) pada berbagai kecepatan putar dan lama waktu sentrifugasI. Jurnal Teknotan, 10, 51-60. doi: 10.24198/jt.vol10n2.8.
Badan Penelitian dan Pengembangan Kesehatan. (2020). Laporan nasional riskesdas 2018. Jakarta: Lembaga Penerbit Badan Penelitian dan Pengembangan Kesehatan.
Bass, T. M., Grandison, R. C., Wong, R., Martinez, P., Partridge, L., & Piper, M. D. W. (2007). Optimization of dietary restriction protocols in Drosophila. The Journals of Gerontology: Series A, 62(10), 1071-1081. doi: 10.1093/gerona/62.10.1071.
Brandkvist, M., Bjørngaard, J. H., Ødegård, R. A., Åsvold, B. O., Sund, E. R., & Vie, G. Å. (2019). Quantifying the impact of genes on body mass index during the obesity epidemic: Longitudinal findings from the HUNT Study. The BMJ, 366, l4067. doi: 10.1136/bmj.l4067.
Cheng, L., Baonza, A., & Grifoni, D. (2018). Drosophila models of human disease. BioMed Research International, 2018, 1-2. doi: 10.1155/2018/7214974.
Choquet, H., & Meyre, D. (2011). Genetics of obesity: What have we learned? Current Genomics, 12(3), 169-179. doi: 10.2174/138920211795677895.
Dama, M. S., Singh, N. M. P., & Rajender, S. (2011). High-fat diet prevents over-crowding-induced decrease in sex ratio in mice. PLoS ONE, 6(1), e16296. doi: 10.1371/journal.pone.0016296.
Diop, S. B., Birse, R. T., & Bodmer, R. (2017). High-fat diet feeding and high throughput triacylglyceride assay in Drosophila melanogaster. Journal of Visualized Experiments, 127, 56029. doi: 10.3791/56029.
Fauzi, A., Ramadani, S. D., & Sukmawati, I. (2017). The consistency of the sex ratio of Drosophila melanogaster (Meigen) in different physical environment conditions. Proceedings of the International Conference on Green Technology, 8(1), Article 1. doi: 10.18860/icgt.v8i1.535.
Guida, M. C., Birse, R. T., Dall’Agnese, A., Toto, P. C., Diop, S. B., Mai, A., … Bodmer, R. (2019). Intergenerational inheritance of high fat diet-induced cardiac lipotoxicity in Drosophila. Nature Communications, 10(1), 193. doi: 10.1038/s41467-018-08128-3.
He, J., Tuo, W., Zhang, X., Dai, Y., Fang, M., Zhou, T., … Liu, Y. (2022). Olfactory senses modulate food consumption and physiology in Drosophila melanogaster. Frontiers in Behavioral Neuroscience, 16.
Heard, E., & Martienssen, R. A. (2014). Transgenerational epigenetic inheritance: Myths and mechanisms. Cell, 157(1), 95-109. doi: 10.1016/j.cell.2014.02.045.
Krittika, S., & Yadav, P. (2022). Trans-generational effect of protein restricted diet on adult body and wing size of Drosophila melanogaster. Royal Society Open Science, 9(1), 211325. doi: 10.1098/rsos.211325.
Liao, S., Amcoff, M., & Nässel, D. R. (2021). Impact of high-fat diet on lifespan, metabolism, fecundity and behavioral senescence in Drosophila. Insect Biochemistry and Molecular Biology, 133, 103495. doi: 10.1016/j.ibmb.2020.103495.
Long, T. A. F., & Pischedda, A. (2005). Do female Drosophila melanogaster adaptively bias offspring sex ratios in relation to the age of their mate?. Proceedings of the Royal Society B: Biological Sciences, 272(1574), 1781-1787. doi: 10.1098/rspb.2005.3165.
Mahmoud, A. M. (2022). An overview of epigenetics in obesity: The role of lifestyle and therapeutic interventions. International Journal of Molecular Sciences, 23(3), 1341. doi: 10.3390/ijms23031341.
Matzkin, L. M., Johnson, S., Paight, C., & Markow, T. A. (2013). Preadult parental diet affects offspring development and metabolism in Drosophila melanogaster. PLoS ONE, 8(3), e59530. doi: 10.1371/journal.pone.0059530.
Nouhaud, P., Mallard, F., Poupardin, R., Barghi, N., & Schlötterer, C. (2018). High-throughput fecundity measurements in Drosophila. Scientific Reports, 8(1), Article 1. doi: 10.1038/s41598-018-22777-w.
Nuttall, F. Q. (2015). Body mass index. Nutrition Today, 50(3), 117-128. doi: 10.1097/NT.0000000000000092.
Radha, V., & Mohan, V. (2016). Obesity – are we continuing to play the genetic “blame game”? Advances in Genomics and Genetics, 6, 11-23. doi: 10.2147/AGG.S52018.
Rosenfeld, C. S., & Roberts, R. M. (2004). Maternal diet and other factors affecting offspring sex ratio: A review. Biology of Reproduction, 71(4), 1063-1070. doi: 10.1095/biolreprod.104.030890.
Salceda, V., & Arceo-Maldonado, C. (2012). Sex ratios in natural populations of Drosophila pseudoobscura from Mexico. Genetika, 44(3), 491-498. doi: 10.2298/GENSR1203491S.
Sales, V. M., Ferguson-Smith, A. C., & Patti, M.-E. (2017). Epigenetic mechanisms of transmission of metabolic disease across generations. Cell Metabolism, 25(3), 559-571. doi: 10.1016/j.cmet.2017.02.016.
Schultzhaus, J. N., Bennett, C. J., Iftikhar, H., Yew, J. Y., Mallett, J., & Carney, G. E. (2018). High-fat diet alters Drosophila melanogaster sexual behavior and traits: Decreased attractiveness and changes in pheromone profiles. Scientific Reports, 8(1), 5387. doi: 10.1038/s41598-018-23662-2.
Sharma, K., & Shakarad, M. N. (2021). Fitness consequences of biochemical adaptation in Drosophila melanogaster populations under simultaneous selection for faster pre-adult development and extended lifespan. Scientific Reports, 11, 16434. doi: 10.1038/s41598-021-95951-2.
Silva-Soares, N. F., Nogueira-Alves, A., Beldade, P., & Mirth, C. K. (2017). Adaptation to new nutritional environments: Larval performance, foraging decisions, and adult oviposition choices in Drosophila suzukii. BMC Ecology, 17(1), 21. doi: 10.1186/s12898-017-0131-2.
Suryani, S., Sariani, S., Earnestly, F., Marganof, M., Rahmawati, R., Sevindrajuta, S., … Fudholi, A. (2020). A comparative study of virgin coconut oil, coconut oil, and palm oil in terms of their active ingredients. Processes, 8(4), Article 4. doi: 10.3390/pr8040402.
Wardani, I. E. (2007). Uji kualitas vco berdasarkan cara pembuatan dari proses pengadukan tanpa pemancingan dan proses pengadukan dengan pemancingan (Undergraduate thesis, Universitas Negeri Semarang, Indonesia). Retrieved from https://lib.unnes.ac.id/660/.
DOI: https://doi.org/10.15408/kauniyah.v1i1.35362 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
This work is licensed under a CC-BY- SA.
Indexed By:
  Â