Primer Design and Optimization of Annealing Temperature for Gene Amplification GSTL2 on Rice

Violita Violita, Afifatul Achyar, Zulyusri Zulyusri, Yusni Atifah, Dwi Hilda Putri, Rezi Nabilah

Abstract


Abstract

Glutathione S-Transferase is a superfamily enzyme that has many roles for living things, especially in the detoxification of Reactive Oxygen Species (ROS), one of which is rice plants. One gene of this family that has a role for plants is GSTL2 This gene is known to have a contribution to Arabidopsis and Oryza sativa L. against abiotic stress. To find out how this gene expression is requires a primer to specifically amplify this gene, and an optimal annealing temperature to support the success of the primer. This study aims to design primers and determine the optimal annealing temperature for gene amplification GSTL2. Primers were designed using the Primer3, which were then analyzed with Genious Prime based on good primer criteria and optimizing the annealing temperature which was carried out using gradient PCR. The results of this study obtained a primer pair is forward 5’-TTCGAAGGGCCAGCATTACT-3’ primer reverse 5’-CAATGTCCACCAAGCTGAA-3’. The primer pair has a length of 20 nt, with melting temperature (Tm) 59–59,4 °C, and GC content 50%. The primer forward there is a secondary structure in the form of a self-dimer with (Tm) 6.2 °C. The primer pair can amplify gene sequences GSTL2 by producing a PCR product 224 bp. The annealing temperature of 60 °C resulting in a single thick, bright DNA strand.

Abstrak

Glutathione S-Transferase merupakan enzim superfamily yang memiliki banyak peranan bagi makhluk hidup terutama dalam detoksifikasi Reactive Oxygen Species (ROS), salah satunya tumbuhan. Salah satu gen dari famili ini yang memiliki peranan bagi tanaman adalah GSTL2. Gen ini diketahui memiliki kontribusi bagi tanaman Arabidopsis dan Oryza sativa L. terhadap stres abiotik. Untuk mengetahui bagaimana ekspresi gen GSTL2 ini dibutuhkan primer untuk mengamplifikasi gen ini secara spesifik, di samping itu suhu annealing yang optimal untuk menunjang keberhasilan primer. Penelitian ini bertujuan untuk mendesain primer dan menentukan suhu annealing yang optimal untuk mengamplifikasi gen GSTL2. Primer didesain menggunakan tools Pick Primer dan Geneious Prime, yang kemudian dianalisis secara in silico berdasarkan kriteria primer yang baik. Serta optimasi suhu annealing yang dilakukan menggunakan gradient PCR. Hasil penelitian ini diperoleh sepasang primer dengan panjang masing-masing primer 20 nt, primer forward 5’-TTCGAAGGGCCAGCATTACT-3’ primer reverse 5’-CAATGTCCACCAAGCTGAA-3’. Pasangan primer dapat mengamplifikasi sekuen gen GSTL2 dengan menghasilkan produk PCR sebesar 224 bp pada suhu annealing 60 °C.


Keywords


Annealing; Glutathione S-Transferases; GSTL; Oryza sativa; Primer design

Full Text:

PDF

References


Basal, O., Szabó, A., & Veres, S. (2020). Physiology of soybean as affected by PEG-induced drought stress. Current Plant Biology, 22.

Biedendieck, R., Borgmeier, C., Bunk, B., Stammen, S., Scherling, C., Meinhardt, F., Wittmann, C., & Jahn, D. (2011). Systems biology of recombinant protein production using bacillus megaterium. In Methods in Enzymology (Vol. 500, Issue December). https://doi.org/10.1016/B978-0-12-385118-5.00010-4

Bustin, S., & Huggett, J. (2017). qPCR primer design revisited. Biomolecular Detection and Quantification, 14(November), 19–28. https://doi.org/10.1016/j.bdq.2017.11.001

Chuang, L. Y., Cheng, Y. H., & Yang, C. H. (2013). Specific primer design for the polymerase chain reaction. Biotechnology Letters, 35(10), 1541–1549.

Erjavec, M. S. (2019). Annealing Temperature of 55 ° C and Specificity of Primer Binding in PCR Reactions. In Synthetic Biology-New Interdisciplinary Science., IntechOpen, 1–16.

Estévez, I. H., & Hernández, M. R. (2020). “Plant Glutathione S-transferases: an overview.” Plant Gene, 23, 100233. https://doi.org/10.1016/j.plgene.2020.100233

Frova, C. (2003). Minireview The plant glutathione transferase gene family : genomic structure , functions , expression and evolution. Physiologia Plantarum, 4(119), 469–479.

Hossain, M. A., & Fujita, M. (2013). Hydrogen Peroxide Priming Stimulates Drought Tolerance in Mustard (Brassica juncea L.) Seedlings. Plant Gene and Trait, 4(20), 109–123.

Hu, T. Z., He, S., Huang, X. Y., Deng, L., & Wang, G. X. (2011). Cloning, molecular characterization and heterologous expression of a glutathione S-transferase gene in rice. Russian Journal of Bioorganic Chemistry, 37(3), 344–350.

Hung, J. H., & Weng, Z. (2016). Designing polymerase chain reaction primers using Primer3Plus. Cold Spring Harbor Protocols, 2016(9), 821–826.

Islam, S., Sajib, S. Das, Jui, Z. S., Arabia, S., & Islam, T. (2019). Genome-wide identification of glutathione S-transferase gene family in pepper , its classification , and expression profiling under different anatomical and environmental conditions. Scientific Reports, July 2018, 1–15.

Kumar, S., Asif, M. H., Chakrabarty, D., Tripathi, R. D., Dubey, R. S., & Trivedi, P. K. (2013). Differential Expression of Rice Lambda Class GST Gene Family Members During Plant Growth, Development, and in Response to Stress Conditions. Plant Molecular Biology Reporter, 31(3), 569–580.

Kumar, S., & Trivedi, P. K. (2018). Glutathione S-transferases: Role in combating abiotic stresses including arsenic detoxification in plants. Frontiers in Plant Science, 9.

Labrou, N. E., Papageorgiou, A. C., Pavli, O., & Flemetakis, E. (2015). Plant GSTome : structure and functional role in xenome network and plant stress response. Current Opinion in Biotechnology, 32, 186–194. https://doi.org/10.1016/j.copbio.2014.12.024

Lallement, P.-A., Brouwer, B., Keech, O., Hecker, A., & Rouhier, N. (2014). The still mysterious roles of cysteine-containing glutathione transferases in plants. Frontiers in Pharmacology, 5(August), 1–22.

Lim, J., Shin, S. G., Lee, S., & Hwang, S. (2011). Design and use of group-specific primers and probes for real-time quantitative PCR. Frontiers of Environmental Science and Engineering in China, 5(1), 28–39.

Maddocks, S., & Jenkins, R. (2017). Chapter 4 - Quantitative PCR: Things to Consider. In S. Maddocks & R. Jenkins (Eds.), Understanding PCR (pp. 45–52). Academic Press.

Maisura, M. A., Lubis, I., Junaedinand, A., & Ehara, H. (2014). Some physiological character responses of rice under drought conditions in a paddy system. J Int Soc Southeast Asian Agric Sci, 20(1), 104–114.

Nianiou-Obeidat, I., Madesis, P., Kissoudis, C., Voulgari, G., Chronopoulou, E., Tsaftaris, A., & Labrou, N. E. (2017). Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Reports, 36(6), 791–805.

Patel, S. V, Bosamia, T. C., Bhalani, H. N., Singh, P., & Kumar, A. (2015). Polymerase Chain Reaction ( PCR ). Agrobios Newsletter: A Monthly Magazine of Agricultural and Biological Sciences Publishing, XIII, p. 148.

Pranata, A., & Ahda, Y. (2022). Desain Primer Untuk Identifikasi Gen Luciferase pada Kunang-Kunang Genus Lamprigera (Lampyridae: Coeloptera). Prosiding Seminar Nasional Biologi, 1(2), 1739–1747. https://semnas.biologi.fmipa.unp.ac.id/index.php/prosiding/article/view/312

Putri, A. I., Achyar, A., Putri, D. H., & Ahda, Y. (2021). Primer design, in silico PCR and optimum annealing temperature for Escherichia coli detection in refillable drinking water samples. Tropical Genetics, 1(2), 52–60.

Rodríguez-Lázaro, D., Cook, N., & Hernández, M. (2013). Real-time PCR in food science: PCR diagnostics. Current Issues in Molecular Biology, 15(2), 39–44.

Rodríguez, A., Rodríguez, M., Córdoba, J. J., & Andrade, M. J. (2019). Design of Primers and Probes for Quantitative Real-Time PCR Methods. PCR Primer Design, 1275(3), 31–56.

Syamsurizal, Ardi, M, D., Fevria, R., Atifah, Y., Badriyya, E., Achyar, A., & Robiansyah, I. (2021). Design of primer Ipomoea batatas chloroplast gene matK. Tropical Genetics, 2(1), 12–16.

Thornton, B., & Basu, C. (2011). Real-Time PCR ( qPCR ) Primer Design Using Free Online Software. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION, 39(2), 145–154.

Thornton, B., & Basu, C. (2015). Rapid and simple method of qPCR primer design. Methods in Molecular Biology, 1275, 173–179.

Vaish, S., Gupta, D., Mehrotra, R., Mehrotra, S., & Kumar, M. (2020). Glutathione S ‑ transferase : a versatile protein family. 3 Biotech, 10(7), 1–19. https://doi.org/10.1007/s13205-020-02312-3

Verma, G., Srivastava, D., Tiwari, P., & Chakrabarty, D. (2019). ROS Modulation in Crop Plants Under Drought Stress ROS Generation : An Overview. 1, 311–336.

Violita, V., & Azhari, S. (2021). Effect of PEG-8000 imposed drought stress on rice varieties germination. Journal of Physics: Conference Series, 1940(1). https://doi.org/10.1088/1742-6596/1940/1/012071

Wang, X., Spandidos, A., Wang, H., & Seed, B. (2012). PrimerBank: A PCR primer database for quantitative gene expression analysis, 2012 update. Nucleic Acids Research, 40(D1), 1144–1149.

Yang, G., Wang, Y., Xia, D., Gao, C., Wang, C., & Yang, C. (2014). Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell, Tissue and Organ Culture, 117(1), 99–112. https://doi.org/10.1007/s11240-014-0424-5

Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13(134).

Zagorchev, L., Seal, C. E., Kranner, I., & Odjakova, M. (2013). A central role for thiols in plant tolerance to abiotic stress. International Journal of Molecular Sciences, 14(4), 7405–7432.

Zagoto, A. D. P., & Violita, V. (2019). Leaf Anatomical Modification in Drought of Rice Varieties (Oryza sativa L.). Eksakta : Berkala Ilmiah Bidang MIPA, 20(2), 42–52. https://doi.org/10.24036/eksakta/vol20-iss2/201




DOI: https://doi.org/10.15408/kauniyah.v17i2.32859 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120