Efficacy of Bacillus thuringiensis Biolarvicide and Temephos Synthetic Larvicides on Culex quinquefasciatus Larvae

Niken Subekti, Citra Anisah Zahra, Anita Fadhila

Abstract


Abstract

An open environment with drainage and lush green grass around the hotel allows mosquitoes to breed. Mosquitoes from the genus Culex are one of the vectors for transmitting arboviruses and filariasis. Temephos is an active ingredient often used to control Culex quinquefasciatus and considered as environmental pollution. Therefore, it is necessary to develop environmentally friendly larvicides, such as the Bacillus thuringiensis biolarvicide. Many studies were conducted to control Aedes aegypti mosquito larvae using these microbial agents, but very little for controlling Cx. quinquefasciatus mosquito larvae. This study aims to compare the effectiveness of temephos and B. thuringiensis biolarvicides. Cx. quinquefasciatus larvae were divided into the insect sample group with temephos and the B. thuringiensis biolarvicide group at concentrations of 0.01, 0.02, and 0.03 mg/L. The number of dead larvae was calculated at 1, 2, 3, 4, 5, 6, and 24 hours. Data analysis was performed using probit analysis of lethal time (LT50 and LT90). From statistical analysis, B. thuringiensis as larvicides showed 100% mortality of mosquito larvae. B. thuringiensis biolarvicide can be used as a substitute for chemical larvicide since it is proven effective in killing Cx. quinquefasciatus mosquito larvae in 24 hours and is environmentally friendly.

Abstrak

Lingkungan terbuka dengan sistem pembuangan dan rumput yang hijau di sekitar hotel memungkinkan nyamuk berkembang biak. Nyamuk dari genus Culex adalah salah satu vektor yang mengirimkan arbovirus dan filariasis. Temephos adalah bahan aktif yang sering digunakan untuk mengendalikan Culex quinquefasciatus dan dianggap mencemari lingkungan. Oleh karena itu, perlu untuk mengembangkan larvasida yang ramah lingkungan, seperti Bacillus thuringiensis biolarvasida. Banyak penelitian yang dilakukan untuk mengendalikan larva nyamuk Aedes aegypti menggunakan agen mikroba ini, tetapi sangat sedikit untuk mengendalikan larva nyamuk Cx. quinquefasciatus. Penelitian ini bertujuan untuk membandingkan efektivitas temephos dan B. thuringiensis biolarvasida. Larva Cx. quinquefasciatus dibagi menjadi kelompok sampel serangga dengan temephos dan kelompok B. thuringiensis biolarvasida pada konsentrasi 0,01, 0,02, dan 0,03 mg/L. Jumlah larva yang mati dihitung pada 1, 2, 3, 4, 5, 6, dan 24 jam. Analisis data dilakukan analisis waktu letal probit (LT50 dan LT90). Analisis statistik, B. thuringiensis sebagai larvasida menunjukkan 100% kematian larva nyamuk. B. thuringiensis biolarvasida dapat digunakan sebagai pengganti larvasida kimia karena terbukti efektif dalam membunuh larva nyamuk Cx. quinquefasciatus dalam waktu 24 jam dan ramah lingkungan.

Keywords


B. thuringiensis; Biolarvicide; Cx. quinquefasciatus; Temephos; Biolarvasida

Full Text:

PDF

References


Ahdiyah, I., & Purwani, K. I. (2015). Pengaruh ekstrak daun mangkokan (Nothopanax scutellarium) sebagai larvasida nyamuk Culex sp. Jurnal Sains dan Seni ITS, 4(2), 32-36.

Apriyani, N., Setyaningrum, E., & Susanto, G. N. (2019). Pengaruh Bacillus thuringiensis israelensis sebagai larvasida vektor demam berdarah dengue (dbd) terhadap ikan guppy (Poecilia reticulata). Journal of Biological Research Bio Wallacea, 6(1), 927-935.

Elqowiyya, A. I. (2015). Efikasi larvasida Bacillus thuringiensis israelensis terhadap kematian larva Culex quinquefasciatus dari daerah Bekasi (Undergraduate thesis). Fakultas Kesehatan dan Ilmu Kesehatan, UIN Syarif Hidayatullah Jakarta, Banten, Indonesia.

Georghiou, G. P., & Wirth, M. C. (1997). Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Applied and Environmental Microbiology, 63(3), 1095-1101.

Hitipeuw, D. (2022). Efikasi larvasida potensial Bacillus thuringiensis terhadap kematian larva Aedes, Anopheles dan Culex (Doctoral dissertation). Universitas Diponegoro, Semarang, Indonesia.

Kovendan, K., Murugan, K., Vincent, S., & Kamalakannan, S. (2011). Larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitology Research, 109, 1251-1257.

Kuppusamy, C., & Ayyadurai, N. (2011). Synergistic activity of Cyt1A from Bacillus thuringiensis subsp israelensis with Bacillus sphaericus B101 H5a5b against Bacillus sphaericus B101 H5a5b-resistant strains of Anopheles stephensi Liston (Diptera: Culicidae). Parasitology Research, 110, 381-388. doi: 10.1007/s00436-011-2502-5.

Mahdalena, V., & Ni'mah, T. (2019). Potensi dan pemanfaatan mikroorganisme dalam pengendalian penyakit tular nyamuk. Spirakel, 11(2), 72-81.

Melanie, M., Rustama, M. M., Sihotang, I. S., & Kasmara, H. (2018). Effectiveness of storage time formulation of Bacillus thuringiensis against Aedes aegypti larvae (Linnaeus, 1757). Jurnal Cropsaver, 1(1).

Muharsini, S., & Wardhana, A. H. (2013). Efficacy of micro-encapsulated of local isolate B. thuringiensis as bio-insectiside for control of myiasis caused by Chrysomya bezziana larvae. Jurnal Ilmu Ternak dan Veteriner, 19(1), 67-73.

Nugroho, A. D. (2011). Kematian larva Aedes aegypti setelah pemberian abate dibandingkan dengan pemberian serbuk serai. Kemas: Jurnal Kesehatan Masyarakat, 7(1), 91-96.

Pei, G., Oliveira, C. M., Yuan, Z., Nielsen-LeRoux, C., Silva-Filha, M. H., Yan, J., & Regis, L. (2002). A strain of Bacillus sphaericus causes slower development of resistance in Culex quinquefasciatus. Applied and Environmental Microbiology, 68(6), 3003-3009.

Tampubolon, D. Y., Pangestiningsih, Y., Zahara, F., & Manik, F. (2013). Pathogenicity test Bacillus thuringiensis and Metarhizium anisopliae against mortality Spodoptera litura fabr (Lepidoptera: Noctuidae) in the laboratory. Online Journal of Agroecotechnology, 1(3), 783-793.

Saliha, B., Wafa, H., & Laid, O. M. (2017). Effect of Bacillus thuringiensis var krustaki on the mortality and development of Culex pipiens (Diptera: Cullicidae). International Journal of Mosquito Research, 4, 20-23.

Sihotang, H., & Umniyati, S. (2018). Toxisitas temephos, minyak atsiri jahe (Zingiber officinale Roxb), dan Bacillus thuringiensis ssp. israelensis(Bti) terhadap larva nyamuk Ae. aegypti dari Sumatra Utara. Berita Kedokteran Masyarakat, 34(3), 127-136.

Subramaniam, J., Murugan, K., & Kovendan, K. (2012). Larvicidal and pupcidal efficacy of Momordica charantia leaf extract and bacterial insecticide, Bacillus thuringiensis against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Journal of Biopesticides, 5, 163.

Webb, C., Doggett, S., & Russell, R. (2016). A guide to mosquitoes of Australia. Clayton South: Csiro Publishing.

World Health Organization (WHO). (2023). Lymphatic filariaris. Retrieved from https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis.

World Health Organization (WHO). (2010). The global program to eliminate lymphatic filariasis: progress report 2000–2009 and strategic plan 2010–2020, Geneva: World Health Organization.




DOI: https://doi.org/10.15408/kauniyah.v17i2.32788 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120