Silica's Medium in Various Concentration Effect on Navicula sp. Metabolism

Khalid Erlangga Karillanata, Dwi Hardianti Luthfiana, Khusnul Qonita Maghfiroh, Dedy Kurnianto, Ria Amelia, Tia Erfianti, Eko Agus Suyono

Abstract


 

Abstract

 

Navicula sp., an aquatic microalgae species, are numerous and diverse, with high metabolites so they hold great potential in biotechnology. Although it has many advantages, it is often not used in industry. In silica medium, Navicula sp. produces various metabolites depending on their concentration. This research aims to discover how adding silica to the medium affects the growth and production of Navicula sp. metabolites so that cultivation can be carried out at low cost and with maximum results. For 21 days, this experiment was carried out with three concentrations of silica (1; 1.5; and 2 mL/L) and one control (0 mL/L) grown each in a 500 mL culture of Navicula sp. Repetition was done thrice for each measurement parameter; growth speed, biomass production, lipids, carbohydrates, and protein. Medium silica 1.5 mL/L was the optimal concentration for growth speed, biomass production, and carbohydrate production for Navicula sp. (0.083; 0.54; and 0.075 mg/day, respectively). Meanwhile, the optimal silica concentration for lipid and protein production for Navicula sp. were 1 mL/L medium and control medium (0.517 and 0.8 × 10-2 mg/day, respectively). Overall, this research can be used to grow Navicula sp. in producing specific metabolites optimally.

 

Abstrak

Navicula sp., spesies mikroalga akuatik, sangat banyak dan beragam dengan metabolit yang tinggi, sehingga memiliki potensi yang besar dalam bioteknologi. Meskipun memiliki banyak keunggulan, spesies ini seringkali tidak digunakan dalam industri. Dalam medium silika, Navicula sp. menghasilkan berbagai metabolit tergantung pada konsentrasinya. Tujuan dari penelitan ini adalah untuk mengetahui bagaimana penambahan silika dalam medium memengaruhi pertumbuhan dan produksi metabolit Navicula sp., sehingga kultivasi dapat dilakukan dengan biaya yang rendah dan hasil yang maksimal. Selama 21 hari, eksperimen ini dilakukan dengan tiga konsentrasi silika (1; 1,5; dan 2 mL/L) dan satu kontrol (0 mL/L) yang ditumbuhkan di dalam 500 mL kultur Navicula sp. Pengulangan dilakukan tiga kali untuk setiap parameter pengukuran, yaitu kecepatan pertumbuhan, produksi biomassa, lipid, karbohidrat, dan protein. Medium silika 1,5 mL/L merupakan konsentrasi yang optimal untuk kecepatan pertumbuhan, produksi biomassa, dan produksi karbohidrat bagi Navicula sp. (0.083; 0.54;  dan 0.075 mg/hari, secara berurutan). Sementara itu, konsentrasi silika yang optimal untuk produksi lipid dan protein bagi Navicula sp., secara berurutan, adalah medium 1 mL/L dan medium kontrol (0.517 dan 0.8 × 10-2 mg/hari). Secara keseluruhan, penelitian ini dapat dijadikan sebagai solusi untuk menumbuhkan Navicula sp. dalam memproduksi metabolit tertentu secara optimal.


Keywords


Culture; Metabolites; Microalgae; Navicula sp.; Silica; Kultur; Metabolit; Mikroalga; Silika

Full Text:

PDF

References


Bhatia, S., Sharma, K., Dahiya, R., & Bera, T. (2015). Plant tissue culture. Modern applications of plant biotechnology in pharmaceutical sciences, 31-107.

Bligh, E. G., & Dyer W. J. (1959). A lipid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917.

Christi, Y., (2007). Biodiesel from microalgae. Biotechnology advances, 25(3), 294-306.

Coêlho, A. A Da-C., Barros, M. U. G., Bezerra, J. H. C., da Silva, J. W. A., Moreira, R. L., & Farias, W. R. L. (2013). Growth of the microalgae Tetraselmis tetrathele and nitrate depletion in culture medium Guillard f/2 and Conway. Acta Scientiarum. Biological Sciences, 35(2), 163-168.

de Viçose, G. C., Porta, A., Viera, M. P., Fernández, P. H., & Izquierdo, M.S. (2012). Effects of density on growth rates of four benthic diatoms and variations in biochemical composition associated with the growth phase. Journal of Applied Phycology, 24, 1427-1437.

Dhali, S., Jain, R., Malik, A., Sharma, S., & Raliya, R., (2022). Cultivation of Navicula sp. on rice straw hydrolysate for the production of biogenic silica. Bioresource Technology, 360, 127577.

Encinas-Arzate, J. J., Marquez-Ríos, E., López-Elías, J. A., Torres-Areola, W., Huerta-Ocampo, J. Á., & Ramírez-Suárez, J. C., (2020). Effect of the deficiency of nitrate and silica on the growth and composition of the benthic diatom Navicula incerta. Latin American journal of aquatic research, 48(2), 280-286.

González-Vega, R. I., Cárdenas-López, J. L., López-Elías, J. A., Ruiz-Cruz, S., Reyes-Díaz, A., Perez-Perez, L. M., ... Del-Toro-Sánchez, C. L. (2021). Optimization of growing conditions for pigments production from microalga Navicula incerta using response surface methodology and its antioxidant capacity. Saudi Journal of Biological Sciences, 28(2), 1401-1416.

Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In W. L. Smith, & M. H. Chanley (Eds.), Culture of marine invertebrate animal (pp. 29-60). New York, USA: Plenum Publishing.

Hewitt, B. R. (1958). Spectrophotometric determination of total carbohydrate. Nature, 182(4630), 246-247.

Hogan, P., Otero, P., Murray, P., & Saha, S. K. (2021). Effect of biomass pre-treatment on supercritical CO2 extraction of lipids from marine diatom Amphora sp. and its biomass evaluation as bioethanol feedstock. Heliyon, 7(1), e05995.

Jati, F., Hutabarat, J., & Herawati, V. E., (2012). Pengaruh penggunaan dua jenis media kultur teknis yang berbeda terhadap pola pertumbuhan, kandungan protein dan asam lemak omega 3 EPA (Chaetoceros gracilis). Journal of Aquaculture Management and Technology, 1(1), 221-235.

Kang, N. S., Jeong, H. J., Yoo, Y. D., Yoon, E. Y., Lee, K. H., Lee, K., & Kim, G. (2011). Mixotrophy in the newly described phototrophic dinoflagellate Woloszynskia cincta from Western Korean waters: Feeding mechanism, prey species and effect of prey concentration. Journal of Eukaryotic Microbiology, 58(2), 152-170.

Korzyńska, A., & Zychowicz, M., (2008). A method of estimation of the cell doubling time-based on the cell culture monitoring data. Biocybernetics and Biomedical Engineering, 28(4), 75-82.

Kröger, N., & Wetherbee, R. (2000). Pleuralins are involved in theca differentiation in the diatom Cylindrotheca fusiformis. Protist, 151(3), 263-273.

Lawijaya, E., Siswanti, D. U., & Suyono, E.A. (2023). Optimization of bioflocculation using Anabaena sp. and Navicula sp. for harvesting of Glagah microalgae consortium. Tropical Agricultural Science, 46(4), 1-11.

Li, X. L., Marella, T. K., Tao, L., Li, R., Tiwari, A., & Li, G. (2017a). Optimization of growth conditions and fatty acid analysis for three freshwater diatom isolates. Phycological Research, 65(3), 177-187.

Li, X. L., Marella, T. K., Tao, L., Peng, L., Song, C. F., Dai, L. L., … Li, G. (2017b). A novel growth method for diatom algae in aquaculture wastewater for natural food development and nutrient removal. Water Science and Technology, 75(12), 2777-2783.

Li, S., Ji, L., Chen, C., Zhao, S., Sun, M., Gao, Z., … Fan, J. (2020). Efficient accumulation of high-value bioactive substances by carbon to nitrogen ratio regulation in marine microalgae Porphyridium purpureum. Bioresource Technology, 123362, 1-9.

Malibari, R., Sayegh, F., Elazzazy, A. M., Baeshen, M. N., Dourou, M., & Aggelis, G. (2018). Reuse of shrimp farm wastewater as a growth medium for marine microalgae isolated from Red Sea–Jeddah. Journal of Cleaner Production, 198, 160-169.

Marella, T. K., Parine, N. R., & Tiwari, A. (2018). The potential of the diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from wastewater. Saudi Journal of Biological Sciences, 25(4), 704-709.

Matsumoto, M., Sugiyama, H., Maeda, Y., Sato, R., Tanaka, T., & Matsunaga, T. (2010). Marine diatom, Navicula sp. strain JPCC DA0580, and marine green algae, Chlorella sp. strain NKG400014 as potential sources for biodiesel production. Applied Biochemistry and Biotechnology, 161(1), 483-490.

Nielsen, S. S. (2010). Phenol-sulfuric acid method for total carbohydrates. In Food analysis laboratory manual (pp. 47-53). Boston, MA: Springer.

Nurafifah, I., Hardianto, M. A., Erfianti, T., Amelia, R., Maghfiroh, K. Q., Kurnianto, D., … Suyono, E. A. (2023). The effect of acidic pH on gr ect of acidic pH on growth kinetics, biomass pr growth kinetics, biomass productivity, and primary metabolite contents of Euglena sp. Makara Journal of Science, 27(2), 97-105.

Rangkuti, P. M., Siswanti, D. U., & Suyono, E. A. (2023). Salinity treatment as bacterial control and its impact on growth and nutritional value of Spirulina (Arthrospira platensis) culture in open pond system. Journal of Fisheries and Environment, 47(1), 63-74.

Sabu, S., Singh, I. S. B., & Joseph, V. (2019). Improved lipid production in oleaginous brackish diatom Navicula phyllepta MACC8 using two-stage cultivation approach. 3 Biotech, 9(12), 1-15.

Saxena, A., Singh, P. K., Bhatnagar, A., & Tiwari, A. (2022). Growth of marine diatoms on aquaculture wastewater supplemented with nano silica. Bioresource Technology, 344, 126210.

Singh, P. K., Bhattacharjya, R., Marella, T. K., Saxena, A., Mishra, B., Savio, S., … Tiwari, A. (2022). Production of lipids and proteins from marine diatoms under changing pH and silica. Bioresource Technology, 362, 127766.

Sulastri, S., & Kristianingrum, S., (2010). Berbagai macam senyawa silika: Sintesis, karakterisasi dan pemanfaatan. Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 15, 1755-1315.

Suyono, E. A., Nopitasari, S., Zusron, M., Khoirunnisa, P., Islami, D. A., & Prabeswara, C. B. (2016). Effect of silica on the carbohydrate content of mixed culture Phaedactylum sp. and Chlorella sp. Biosciences Biotechnology Research Asia, 13(1), 109-114.

Yang, M., Zhao, W., & Xie, X. (2014). Effects of nitrogen, phosphorus, iron, and silicon on growth of five species of marine benthic diatoms. Acta Ecologica Sinica, 34(6), 311-319.




DOI: https://doi.org/10.15408/kauniyah.v1i1.31078 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120