Growth And Lipid Accumulation of Chaetoceros calcitrans After Phosphorus And Light Intensity Optimization
Abstract
Abstract
Growth and lipid content of Chaetoceros calcitrans are greatly influenced by environmental factors. The aims of this study to optimize phosphorus concentrations and light intensity on the growth and lipid accumulation of C. calcitrans. This study used N:P:light intensity concentration from the previous research, namely 441:36.2 µM:2,500 lux (12:1:2,500 lux). Concentrations of P were then optimized to 36.2 µM, 27.5 µM, 18.1 µM, 9.05 µM (1; 0.75; 0.5; 0.25) and light intensity to 2,500; 3,000; 3,500; 4,000 lux. C. calcitrans was cultured in medium f/2 guillard, the initial density was 6 x 105 cells/mL. Sampling for lipid analysis was conducted in exponential, stationary, and the end of stationary phase by centrifugation, whereas lipid was extracted using the Bligh and Dyer method, and dried lipids were analyzed using gas chromatography-GC. The highest lipid content found at the late stationary phase of the N:P concentrations and light intensity 12:0.5:(4,000 lux), there was 15.46 ± 0.53%-dw with the highest cell density of 5.5 ± 5.56 x 106 cells/mL. The analysis result showed that palmitoleic acid (C16:1) was the highest fatty acid produced by each optimization. Nutritional deficiency and high light intensity were triggers for of C. calcitrans to accumulate lipids, and influence the fatty acid profile of C. calcitrans.
Abstrak
Pertumbuhan dan kandungan lipid Chaetoceros calcitrans sangat dipengaruhi oleh faktor lingkungan. Tujuan penelitian ini adalah untuk mengoptimasi konsentrasi fosfor dan intensitas cahaya terhadap pertumbuhan dan akumulasi lipid C. calcitrans. Penelitian ini menggunakan hasil konsentrasi N:P:intensitas cahaya dari penelitian sebelumnya, yaitu 441:36.2µM:2,500 lux (12:1:2,500 lux). Konsentrasi P kemudian dioptimasi menjadi 36,2 µM, 27,5 µM, 18,1 µM, 9,05 µM (1; 0,75; 0,5; 0,25), dan intensitas cahaya menjadi 2.500; 3.000; 3.500; 4.000 lux. C. calcitrans dikultur dalam medium f/2 guilard, densitas awal 6 x 105 sel/mL. Pengambilan sampel untuk analisis lipid dilakukan pada fase eksponensial, stasioner, dan akhir stasioner dengan sentrifugasi, sedangkan lipid diekstraksi menggunakan metode Bligh dan Dyer, lipid kering dianalisis menggunakan kromatografi gas-GC. Kandungan lipid tertinggi terdapat pada fase akhir stasioner konsentrasi N:P dan intensitas cahaya 12:0,5:(4,000 lux), yaitu sebesar 15,46 ± 0,53%-dw dengan kerapatan sel tertinggi 5,5 ± 5,56 x 106 sel/mL. Hasil analisis menunjukkan bahwa asam palmitoleat (C16:1) merupakan asam lemak tertinggi yang dihasilkan oleh masing-masing optimasi. Kekurangan nutrisi dan intensitas cahaya yang tinggi menjadi pemicu C. calcitrans. mengakumulasi lipid, dan mempengaruhi profil asam lemak C. calcitrans.
Keywords
Full Text:
PDFReferences
Bastos, C. R. V., Maia, I. B., Pereira, H., Navalho, J., & Varela, J. C. S. (2022). Optimisation of biomass production and nutritional value of two marine diatoms (Bacillariophyceae), Skeletonema costatum and Chaetoceros calcitran. biologi, II(4), 594. doi: 10.3390/biology11040594.
Borowitzka, M. A., & Borowitzka, L. J. (1992). Mikroalga biotechnology. Newyork: Cambridge University Press.
Chia, S. R., Ong, H. C., Chew, K. W., Show, P. L., Phang, S-M., Ling, T. C., … Lee, D-J. (2018). Sustainable approaches for algae utilisation in bioenergy production. Renew Energy. 129, 838–52. doi: 10.1016/j.renene.2017.04.001.
Cruz, de C. H., Sun, H-X., Bowler, C., & Chua, N. H. (2015). The Phaeodactylum tricornutum long non-coding transcriptome: Mere noise or functionally relevant?. Conference: Molecular Life of Diatoms. doi: 10.13140/RG.2.1.3630.6081.
El-Sheek, M. M., & Rady, A. A. (1995). Effect of phosporus stavation on growht, photosynthesis and some metabolic processes in the uniceluller green alga Clorella kessleri. Phyton, 35, 139-151.
Fan, J., Andre, C., & Xu, C. (2011). A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Letter, 585, 1985-1991.
Guihéneuf, F., & Stengel, D. B. (2013). LC-PUFA-enriched oil production by microalgae: Accumulation of lipid and triacylglycerols containing n-3 LC-PUFA is triggered by nitrogen limitation and inorganic carbon availability in the marine haptophyte Pavlova lutheri. Marine Drugs Journal, 11(11), 4246-66. doi: 10.3390/md11114246.
Goncalves, E. C., Johnson, J. V., & Rathinasabapathi, B. (2013). Converstion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29. Planta, 238, 895-906.
Guzman, H. M., Valido, A., de la Jara., Duarte, L. C., & Presmanes, K. F. (2010). Estimate by means of flow cytometry of variation in composition of fatty scids from Tetraselmis suecica in response to culture conditions. Aquaculture International, 18, 189-199.
Hasby, R. M., & Suantika, G. (2016). Limitasi nitrat untuk pertumbuhan dan akumulasi lipid Chaetoceros calcitran. Biotika Jurnal Ilmiah Biologi, 14(1), 66-71. doi: 10.24198/bjib.v14i1.14416.
Hirata, H., Andarias, I., & Yamasaki S. (1981). Effect of salinity temperature on the growth of the marine phytoplankton Chlorella saccharophila. Memoirs Faculty of Fisheries Kagoshima University, 30, 257-262
Liang, Y., Mai, K., & Sun, S. (2005). Differences in growht, total lipid content and fatty acid compotition among 60 clones of Cylindrotheca fusiformis. Journal of Applied Phycology, 17, 61-65.
Liu, J., Yuan, C., Hu, G., & Li, F. (2012). Effects of light intensity on the growth and lipid accumulation of microalgae Scenedesmus sp.11-1 under nitrogen limitation. Applied Biochemistry and Biotechnology, 166, 2127-2137.
Lynn, S., Kilham, S. S., Kreeger, D. A., & Interlandi, S. J. (2000). Effect of nutrient availability on the biochemical and elemental stoichiometry in fresh water diatom Stephanodiscus minutulus (Bacillariophyceae). Journal of Phycology, 36, 10–522.
Khozin-Goldberg, I., & Cohen, Z. (2006). The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water Eustigmatophyte Monodus subterraneus. Phytochemistry, 67, 696-701.
Kim, K., Jung, J. Y., & Han, H. S. (2019). Utilization of microalgae in aquaculture system: Biological wastewater treatment. Emerging Science Journal, 3(4), 209-221 doi:10.28991/esj-2019-01183.
Kordi, M. G. H. K., & Tancung, A. B. (2007). Pengelolaan kualitas air dalam budidaya perairan. Jakarta: Rineka Cipta.
Li-Beisson, Y., Beisson, F., & Riekhof, W. (2015). Metabolism of acyl-lipids in Chlamydomonas reinhardtii. The Plant Journal, 82(3), 504-522. doi: 10.1111/tpj.12787. Epub 2015 Mar 3. PMID: 25660108.
Lovio-Fragoso, J. P., Hayano-Kanashiro, C., & López-Elías, J. A. (2019). Effect of different phosphorus concentrations on growth and biochemical composition of Chaetoceros muelleri. Latin America Journal Aquatiq Research, 47(2), 361-362. doi: 10.3856/vol47-issue2-fulltext-17.
López-Arredondo, D. L., Leyva-Gonzales, M. A., Gonzalez-Morales, S. I., Lopez-Bucio, J., & Herrera-Estrella, L. (2014). Phosphate nutrition: Improving low-phosphate tolerance in crops. Annual Review of Plant Biology, 65, 95-123. doi: 10.1146/annurev-arplant-050213-035949.
Maltsev, Y., Maltseva, K., Kulikovskiy, M., & Maltseva, S. (2021). Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology (Basel), 10(10), 1060. doi: 10.3390/biology10101060.
Mandotra, S. K., Kumar, P., Suseela, M. R., Nayaka, S., & Ramteke, P. W. (2016). Evaluation of fatty acid profile and biodiesel properties of microalgae Scenedesmus abundans under the influence of phosphorus, pH and light intensities. Bioresource Technology, 201, 222-229
Markou, G., & Nerantzis, E. (2013). Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnology Advances, 31, 1532-1542. doi.org/10.1016/j.biotechadv.2013.07.011.
Merchant, S. S., Kropat, J., Liu, B., Shaw, J., & Warakanont, J. (2012). TAG, you are it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Current Opinion in Biotechnology, 23, 352-363. doi.org/10.1016/j.copbio.2011.12.001.
Miller, M. R., Siew-Young, Q., Kathrin, S., Nalder., & Michael, A. P. (2012). Changes in oil content, lipid class and fatty acid composition of the microalga Chaetoceros calcitrans over different phases of batch culture. Aquaculture Research, Plant Physiology, 154, 1737-1752. doi: 10.1111/are.12107.
Mohan, N., Rajaram, M. G., Boopathy, A. B., & Rengasamy, R. (2012). Biomass and lipid production of marine diatom Amphiprora paludosa W. Smith at different nutrient concentrations. Journal of Algal Biomass Utilization, 3(4), 52-59.
Mühlroth. A., Keshuai, L., Gunvor, R., Per, W., Yngvar, O., Martin F. H-M, … Atle, M. B. (2013). Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Marine Drugs Journal, 11(11), 4662-4697. doi: 10.3390/md11114662.
Nigam, S., Rai, M. P., & Sharma, R. (2011). Effect of nitrogen on growth and lipid content of Chlorella pyrenoidosa. American Journal of Biochemistry and Biotechnology, 7(3), 124-129. doi: 10.3844/ajbbsp.2011.124.129.
Nzayisenga, J. C., Farge, X., Groll, S. L., & Sellstedt, A. (2020). Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels, 13(4), 1-8. doi: 10.1186/s13068-019-1646-x.
Panggabean, L. M. G. (2011). Koleksi kultur mikroalga. Oseana, XXXII(2), 11-2011.
Peltomaa, E., Hallfors, H., & Taiple, S. J. (2019). Comparison of Diatoms and Dinoflagellates from different habitats as sources of PUFAs. Marine Drugs Journal, 17(4), 233. doi: 10.3390/md17040233.
Salisbury. F. B., & Ross, C. W. (1995). Fisiologi tumbuhan. Bandung: ITB press.
Sappewali. (2009). Penentuan intensitas cahaya optimum pada pertumbuhan dan kadar lipid mikroalga Tetraselmis chuii (Master’s thesis). Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Jawa Timur, Indonesia.
Sharma, K. K., Holger, S. & Peer, M. S. (2012). High lipid induction in microalgae or biodiesel production. Article, 5, 1532-1552.
Shingh, D. K., & Mallick, N. (2014). Accumulation potential of lipids and analysis of fatty acid profile of few microalgal species for biodiesel feedstock. Journal of Microbiology and Biotechnology Research, 4(1),37-44.
Solovchenko, A. E. (2012). Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses: Review. Russian Journal of Plant Physiology, 59(2), 167-176.
Sitorus, M. (2009). Hubungan nilai produktivitas primer dengan konsentrasi klorofil-a, dan faktor fisika kimia di perairan Danau Toba, Balige, Sumatra Utara (Master’s thesis). Universitas Sumatra Utara, Medan, Indonesia.
Suantika, G., Pingkan, A., Dea, I. A., & Yusuf, S. (2009). Pengaruh kepadatan awal inokulum terhadap kualitas kultur Chaetoceros gracilis (Schütt) pada sistem batch. Jurnal Matematika dan Sains, 14(1), 1-8.
Vega, J. M. P., Roa, M. A. C., Saavedra, M. del P. S., Ramírez, D. T., & Davalos, y. C. R. (2010). Effect of culture medium and nutrient concentration on fatty acid content of Chaetoceros muelleri. Revista Latinoamericana de Biotechnologia Ambiental Y Algal, 1(1), 6-15.
Yaakob, M. A., Mohamed, R. M. S. R., Al-Gheethi, A., Gokare, R. A., & Ambati, R. R. (2021). Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview. Cells, 10(2), 393. doi: 10.3390/cells10020393.
DOI: https://doi.org/10.15408/kauniyah.v16i2.30316 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
This work is licensed under a CC-BY- SA.
Indexed By:
  Â