Efisiensi Penyerbukan Tetragonula laeviceps Pada Budi Daya Tumpang Sari Tomat Dan Mentimun Di Greenhouse
Abstract
Abstrak
Penyerbukan oleh serangga liar merupakan salah satu servis ekosistem yang tidak dapat diperoleh oleh sistem pertanian tertutup. Hal tersebut mungkin dapat digantikan oleh lebah yang didomestikasi, seperti lebah tidak bersengat (Tetragonula laeviceps). Pada penelitian ini, koloni T. laeviceps diuji coba sebagai sistem tumpang sari tomat (Lycopersicon esculentum L.) dan mentimun (Cucumis sativus L.) yang ditanam pada greenhouse. Kesuksesan penyerbukan diamati pada 100 tangkai bunga tomat dan mentimun oleh koloni T. laeviceps yang ditempatkan pada greenhouse, kemudian dibandingkan dengan kesuksesan penyerbukan pada sistem budi daya yang terdapat di luar greenhouse (penyerbukan terbuka). Untuk dapat menjelaskan peran dari T. laeviceps sebagai penyerbuk maka dilakukan juga pengamatan pada tingkat kunjungan lebah, laju kunjungan, dan waktu yang dihabiskan pada bunga. Efek lanjutan dari proses penyerbukan seperti diameter, panjang, bobot, dan jumlah biji juga diamati dan dibandingkan antara kelompok yang dibudidayakan di dalam dan di luar greenhouse. Efisiensi penyerbukan dan kualitas buah tomat yang dihasilkan di luar greenhouse secara signifikan lebih baik dibandingkan dengan aplikasi lebah tidak bersengat di dalam greenhouse. Efisiensi penyerbukan mentimun dengan T. laeviceps (14%) sangat rendah dibandingkan dengan penyerbukan terbuka (73%), namun kualitas buah yang dihasilkan lebih tinggi walaupun tidak terdapat perbedaan yang signifikan. Di sisi lain, efisiensi penyerbukan tomat dengan T. laeviceps (45%) sangat rendah dibandingkan dengan penyerbukan terbuka (80%), dengan kualitas buah jauh lebih rendah. Berdasarkan hasil dapat disimpulkan bahwa T. laeviceps dapat diaplikasikan sebagai agen penyerbuk pada sistem greenhouse, namun belum dapat menggantikan keuntungan dari variasi dari agen penyerbuk (biotik dan abiotik) yang terdapat pada sistem budi daya di sistem terbuka. Hasil penelitian ini dapat dijadikan dasar untuk mendesain sistem produksi buah di dalam greenhouse yang berkesinambungan melalui aplikasi servis penyerbukan.
Abstract
Closed system farming system is lack of natural pollination service which might solve the by application of domesticated bees, such as stingless bees (Tetragonula laeviceps) as pollination agent. This hypothesis was tested in this study in which T. laeviceps was applied as pollination agent of tomato (Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.) cultivated as companion plants inside the greenhouse. During this study, pollination efficiency and its effect on fruit quality (such as dimension, weight, and seed numbers) of application of T. laeviceps as a pollination agent were compared to natural pollination systems outside the greenhouse (open pollination). The variables were observed on 100 flowers of both tomato and cucumber cultivated inside and outside greenhouse. The efficiency of pollination by T. laeviceps (14%) on cucumber was significantly lower than open pollination (73%) and the quality of the fruit produced was lower although insignificant. On the other hand, the efficiency of pollination by T. laeviceps (45%) on tomato was also significantly lower than open pollination (80%) and the quality of the fruit produced was significantly lower. Based on this study, although stingless bees have great potency to be applied as pollinators for cultivated crops inside a greenhouse, they still do not completely replace the benefit of pollinator diversity (biotic and abiotic). Furtherly, this study could be applied as a foundation to design a sustainable fruit production inside greenhouse by applying the pollination services.
Keywords
Full Text:
PDFReferences
yunin, Q., Rauf, A., & Harahap, I. S. (2019). Foraging behaviour and pollination efficiency of Heterotrigona itama (Cockerell) and Tetragonula laeviceps (Smith) (Hymenoptera: Apidae) on Chayote. Jurnal Ilmu Pertanian Indonesia, 24(3), 247-257. doi: 10.18343/jipi.24.3.247.
Adiyoga, W., Suherman, R., Gunadi, N., & Hidayat, A. (2004). Karakteristik teknis sistem pertanaman polikultur sayuran dataran tinggi. Jurnal Hortikultura, 14(4), 287-301. doi: 10.21082/jhort.v14n4.2004.p287-301.
Al-Abbadi, S. Y. (2010). Open pollination efficiency on field-grown tomato compared with isolated under similar condition. Sarhad Journal of Agriculture, 26(3), 361-364.
Anandhabhairavi, N., Ambethgar, V., & Philip. S. R. (2020). Foraging behavior of Apis cerana indica Fab. (Apidae Hymenoptera) on Cucumber. Journal of Entomology and Zoology Studies, 8(6), 189-192.
Aronne, G., Giovanetti, M., Guarracino, M. R., & de Micco, V. (2012). Foraging rules of flower selection applied by colonies of Apis mellifera: Ranking and associations of floral sources. Functional Ecology, 26(5), 1186-1196. doi: 10.1111/j.1365-2435.2012.02017.x.
Azmi, W. A., Samsuri, N., Hatta, M. F. M., Ghazi, R., & Seng, C. T. (2017). Effects of stingless bee (Heterotrigona itama) pollination on greenhouse cucumber (Cucumis sativus). Malaysian Applied Biology, 46(1), 51-55.
Bashir, M. A., Alvi, A. M., Khan, K. A., Rehmani, M. I. A., Ansari, M. J., Atta, S., … Tariq, M. (2018). Role of pollination in yield and physicochemical properties of tomatoes (Lycopersicon esculentum). Saudi Journal of Biological Sciences, 25(7), 1291-1297. doi: 10.1016/j.sjbs.2017.10.006.
Chole, H., Woodard, S. H., & Bloch, G. (2019). Body size variation in bees: regulation, mechanisms, and relationship to social organization. Current Opinion in Insect Science, 35, 77-87. doi: 10.1016/j.cois.2019.07.006.
Deprá, M. S., Delaqua, G. G., Freitas, L., & Gaglianone, M. C. (2013). Pollination deficit in open-field tomato crops (Solanum lycopersicum L., Solanaceae) in Rio de Janeiro state, Southeast Brazil. Journal of Pollination Ecology, 12(1), 1-8. doi: 10.26786/1920-7603(2014)7.
Elisante, F., Ndakidemi, P., Arnold, S. E. J., Belmain, S. R., Gurr, G. M., Darbyshire, I., … Stevenson, P. C. (2020). Insect pollination is important in a smallholder bean farming system. PeerJ, 8, 1-22. doi: 10.7717/peerj.10102.
Eltz, T., Bruhl, C. A., Imiyabir, Z., & Linsenmair, K. E. (2003). Nesting and nest trees of stingless bees (Apidae: Meliponini) in lowland dipterocarp forests in Sabah, Malaysia, with implications for forest management. Forest Ecology and Management, 172, 301-313. doi: 10.1016/S0378-1127(01)00792-7.
Faheem, M., Aslam, M., & Razaq, M. (2004). Pollination ecology with special reference to insects a review. Journal of Research (Science), 4(1), 395-409.
Feuerbacher, E., Fewell, J. H., Roberts, S. P., Smith, E. F., & Harrison, J. F. (2003). Effects of load type (pollen or nectar) and load mass on hovering metabolic rate and mechanical power output in the honey bee Apis mellifera. Journal of Experimental Biology, 206(11), 1855-1865. doi: 10.1242/jeb.00347.
Gadhiya, V. C., & Pastagia, J. J. (2019). Foraging behavior of stingless bees, Tetragonula laeviceps Smith in net house condition. Journal of Entomology and Zoology Studies, 7(6), 1005-1009.
Garibaldi, L. A., Carvalheiro, L. G., Vaissière, B. E., Gemmill-herren, B., Hipólito, J., Freitas, B. M., … Blochtein, B. (2016). Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science, 351(6271), 388-391. doi: 10.1126/science.aac7287.
Grace, A., Jane, O., Jared, M., Christine, K., Dinah, M., Patricia, N., … Kamunyu, K. (2017). Productivity of tomato in the greenhouse using bee pollination. International Journal of Applied Agricultural Sciences, 3(6), 161. doi: 10.11648/j.ijaas.20170306.14.
Greenleaf, S. S., & Kremen, C. (2006). Wild bee species increase tomato production and respond differently to surrounding land use in Northern California. Biological Conservation, 133(1), 81-87. doi: 10.1016/j.biocon.2006.05.025.
Hossain, M., Yeasmin, F., Rahman, M., Akhtar, S., & Hasnat, M. (2018). Role of insect visits on cucumber (Cucumis sativus L.) yield. Journal of Biodiversity Conservation and Bioresource Management, 4(2), 81-88. doi: 10.3329/jbcbm.v4i2.39854.
Hristov, P., Neov, B., Shumkova, R., & Palova, N. (2020). Significance of apoidea as main pollinators. ecological and economic impact and implications for human nutrition. Diversity, 12, 280. doi: 10.3390/d12070280.
Kehrberger, S., & Holzschuh, A. (2019). How does timing of flowering affect competition for pollinators, flower visitation and seed set in an early spring grassland plant? Scientific Reports, 9(1), 1-9. doi: 10.1038/s41598-019-51916-0.
Khalifa, S. A. M., Elshafiey, E. H., Shetaia, A. A., Abd El-Wahed, A. A., Algethami, A. F., Musharraf, S. G., … El-Seedi, H. R. (2021). Overview of bee pollination and its economic value for crop production. Insects, 12, 688. doi: 10.3390/insects12080688.
Kishan-Tej, M., Srinivasan, M. R., Rajashree, V., & Thakur, R. K. (2017). Stingless bee Tetragonula iridipennis Smith for pollination of greenhouse cucumber. Journal of Entomology and Zoology Studies, 5(4), 1729-1733.
Klein, A. M., Steffan-Dewenter, I., & Tscharntke, T. (2003). Fruit set of highland coffee increases with the diversity of pollinating bees. Proceedings of the Royal Society B: Biological Sciences, 270(1518), 955-961. doi: 10.1098/rspb.2002.2306.
Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303-313. doi: 10.1098/rspb.2006.3721.
Naghiloo, S., Nikzat-Siahkolaee, S., & Esmaillou, Z. (2021). Size-matching as an important driver of plant-pollinator interactions. Plant Biology, 23(4), 583-591. doi: 10.1111/plb.13248.
Nunes-Silva, P., Hnrcir, M., Shipp, L., Imperatriz-fonseca, V. L., & Kevan, P. G. (2013). The behaviour of Bombus impatiens (Apidae, Bombini) on tomato (Lycopersicon esculentum Mill., Solanaceae) flowers: Pollination and reward perception. Journal of Pollination Ecology, 1(5), 33-40. doi: 10.26786/1920-7603(2013)3.
Potts, S. G., Imperatriz-Fonseca, V., Ngo, H. T., Aizen, M. A., Biesmeijer, J. C., Breeze, T. D., … Vanbergen, A. J. (2016). Safeguarding pollinators and their values to human well-being. Nature, 540(7632), 220-229. doi: 10.1038/nature20588.
Putra, R. E., & Kinasih, I. (2014). Efficiency of local Indonesia honeybees (Apis cerana L.) and stingless bees (Trigona iridipennis) on tomato (Lycopersicon esculentum Mill.) pollination. Pakistan Journal of Biological Sciences, 17(1), 86-91. doi: 10.3923/pjbs.2014.86.91.
Putra, R. E., Permana, A. D., & Kinasih, I. (2014). Application of Asiatic honey bees (Apis cerana) and stingless bees (Trigona laeviceps) as pollinator agents of hot pepper (Capsicum annuum L.) at local Indonesia farm system. Psyche, 2014, 1-5. doi: 10.1155/2014/687979.
Putra, R. E., Subagio, J., Kinasih, I., Permana, A. D., & Rosmiati, M. (2017). Pola kunjungan serangga liar dan efek penambahan koloni Trigona (Tetragonula) laeviceps Smith pada penyerbukan kabocha (Cucurbita maxima). Jurnal Entomologi Indonesia, 14(2), 69-79. doi: 10.5994/jei.14.2.69.
Rao, M. R., Singh, M. P., & Day, R. (2000). Insect pest problems in tropical agroforestry systems: Contributory factors and strategies for management. Agroforestry Systems, 50(3), 243-277. doi: 10.1023/A:1006421701772.
Russo, L., Park, M. G., Blitzer, E. J., & Danforth, B. N. (2017). Flower handling behavior and abundance determine the relative contribution of pollinators to seed set in apple orchards. Agriculture, Ecosystems and Environment, 246, 102-108. doi: 10.1016/j.agee.2017.05.033.
dos-Santos, S. A. B., Roselino, A. C., & Bego, L. R. (2008). Pollination of cucumber, Cucumis sativus L. (Cucurbitales: Cucurbitaceae), by the stingless bees Scaptotrigona aff. depilis Moure and Nannotrigona testaceicornis Lepeletier (Hymnoptera: Meliponini) in greenhouse. Neotropical Entomology, 37(5), 506-512.
Sargent, R. D., & Ackerly, D. D. (2008). Plant-pollinator interactions and the assembly of plant communities. Trends in Ecology and Evolution, 23(3), 123-130. doi: 10.1016/j.tree.2007.11.003.
Schmickl, T., & Crailsheim, K. (2004). Inner nest homeostasis in a changing environment with special emphasis on honey bee brood nursing and pollen supply. Apidologie, 35, 249-263. doi: 10.1051/apido.
Schultz, B., Phillips, C., Rosset, P., & Vandermeer, J. (1982). An experiment in intercropping cucumbers and tomatoes in Southern Michigan, U.S.A. Scientia Horticulturae, 18(1), 1-8. doi: 10.1016/0304-4238(82)90096-6.
Silva-Neto, C. M., Lima, F. G., Gonçalves, B. B., Bergamini, L. L., Bergamini, B. A. R., Elias, M. A., & Franceschinelli, E. V. (2013). Native bees pollinate tomato flowers and increase fruit production. Journal of Pollination Ecology, 11(February 2016), 41-45. doi: 10.26786/1920-7603(2013)4.
Smith, C., Weinman, L., Gibbs, J., & Winfree, R. (2019). Specialist foragers in forest bee communities are small, social or emerge early. Journal of Animal Ecology, 88(8), 1158-1167. doi: 10.1111/1365-2656.13003.
Solange, A. B. S., Ana, C. R., & Luci, R. B. (2008). Pollination of cucumber, Cucumis sativus L. (Cucurbitales: Cucurbitaceae), by the stingless bees Scaptotrigona aff. depilis Moure and Nannotrigona testaceicornis Lepeletier (Hymenoptera: Meliponini) in greenhouses. Neotropical Entomology, 37(5), 506-512. doi: 10.1590/S1519-566X2008000500002.
Vidal, M. D. G., De Jong, D., Wien, H. C., & Morse, R. A. (2006). Nectar and pollen production in pumpkin (Cucurbita pepo L.). Revista Brasileira de Botanica, 29(2), 267-273. doi: 10.1590/S0100-84042006000200008.
Walters, S. A., & Taylor, B. H. (2006). Efects of honey bee pollination on pumpkin fruit and seed yield. HortScience, 41(2), 370-373. doi: 10.21273/hortsci.41.2.370.
Wulandari, A. P., Atmowidi, T., & Kahono, D. S. (2017). Peranan lebah Trigona laeviceps (Hymenoptera: Apidae) dalam produksi biji kailan (Brassica oleracea var. alboglabra). Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 45(2), 196. doi: 10.24831/jai.v45i2.13236.
DOI: https://doi.org/10.15408/kauniyah.v17i2.29769 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
This work is licensed under a CC-BY- SA.
Indexed By:
  Â