Random Mutagenesis of Lipomyces maratuensis InaCC Y720 Using Commercial UV Lamp To Increase Lipid Production
Abstract
Abstract
Oleaginous yeasts are capable of accumulating high lipid concentration up to 20% of dry cell weight. High lipid content, a shorter life cycle, and similar a fatty acid composition to vegetable oils makes oleaginous yeast a potential lipid producer. Lipomyces maratuensis InaCC Y720 is a novel species isolated from Maratua Island, East Kalimantan, which has been reported as a potential yeast lipid producer. However, lipid productivity of the yeast is needed to be increased to make it suitable for an industrial scale. The aim of this study is to obtain potential mutant strains for the biodiesel industry. Random mutagenesis was applied by using commercial UV-C lamp on the strain which resulting in an 80% death rate after three hours irradiation. Subsequent treatment was carried out using cerulenin as a selection agent for mutans, yielding six mutant strains. Among these strains, mutant 1 produced the highest lipid production, with a lipid concentration of 0.072 g/L and a lipid percentage of 8.603%. Nevertheless, when compared to the wild type, the lipid productivity of mutant 1 is low. Based on these results, the mutagenesis approach using commercial lamp UV-C has not obtained the expected mutants, so it is recommended to use different methods for future study.
Abstrak
Khamir oleaginous memiliki kemampuan dapat mengakumulasi lipid hingga 20% dari berat kering selnya. Tingginya kadar lipid yang diproduksi, siklus hidup yang pendek serta komposisi lipid yang mirip dengan minyak tumbuhan dapat menjadikan khamir sebagai alternatif penghasil lipid. Lipomyces maratuensis InaCC Y720 merupakan spesies baru yang diisolasi dari Pulau Maratua, Kalimantan Timur yang dilaporkan sebagai khamir penghasil lipid potensial. Namun, produktivitas lipid khamir tersebut perlu ditingkatkan agar sesuai untuk skala industri. Tujuan dalam studi ini adalah mendapatkan strain mutan yang potensial untuk industri biodiesel. Metode mutagenesis secara acak dilakukan dengan menggunakan lampu UV-C komersial pada strain yang menghasilkan tingkat kematian 80% selama tiga jam penyinaran. Setelah itu, dilakukan perlakuan lebih lanjut dengan penggunaan serulenin sebagai agen seleksi mutan. Proses seleksi menghasilkan enam strain mutan. Di antara keenam strain mutan, mutan 1 menghasilkan jumlah lipid tertinggi dengan berat lipid 0,072 g/L dengan persentase lipid yaitu 8,603%. Namun, dibandingkan dengan wild type, produktivitas lipid mutan 1 lebih rendah. Berdasarkan hasil ini, mutagenesis menggunakan lampu UV-C komersial belum mendapatkan mutan yang diharapkan sehingga disarankan penggunaan metode yang berbeda untuk penelitian selanjutnya.
Keywords
Full Text:
PDFReferences
Aslam, A., Thomas-Hall, S. R., Manzoor, M., Jabeen, F., Iqbal, M., uz Zaman, Q., Schenk, P. M., & Asif Tahir, M. (2018). Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: Fatty acid profiling and biodiesel production. Journal of Photochemistry and Photobiology B: Biology, 179(January), 126–133. https://doi.org/10.1016/j.jphotobiol.2018.01.003
Bligh, E.G. and Dyer, W. J. (1959). Canadian Journal of Biochemistry and Physiology. Canadian Journal of Biochemistry and Physiology, 37(8).
De Gruijl, F. R., & Van Der Leun, J. C. (1994). Estimate of the wavelength dependency of ultraviolet carcinogenesis in humans and its relevance to the risk assessment of a stratospheric ozone depletion. Health Physics, 67(4), 319–325. https://doi.org/10.1097/00004032-199410000-00001
Gomaa, A., desoukey, samar, & Kamel, M. (2021). GC-MS analysis of volatile oil and fatty acids composition of Abutilon hirtum (Lam.) Sweet leaves. Journal of Advanced Biomedical and Pharmaceutical Sciences, 4(3), 119–123. https://doi.org/10.21608/jabps.2021.57135.1116
Guo, M., Cheng, S., Chen, G., & Chen, J. (2019). Improvement of lipid production in oleaginous yeast Rhodosporidium toruloides by ultraviolet mutagenesis. Engineering in Life Sciences, 19(8), 548–556. https://doi.org/10.1002/elsc.201800203
Huang, G. H., Chen, F., Wei, D., Zhang, X. W., & Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87(1), 38–46. https://doi.org/10.1016/j.apenergy.2009.06.016
Ichihara, K., & Fukubayashi, Y. (2010). Preparation of fatty acid methyl esters for gas-liquid chromatography. Journal of Lipid Research, 51(3), 635–640. https://doi.org/10.1194/jlr.D001065
Lee, E. S., Park, S. Y., & Ha, S. Do. (2016). Effect of UV-C light on the microbial and sensory quality of seasoned dried seafood. Food Science and Technology International, 22(3), 213–220. https://doi.org/10.1177/1082013215586293
Leung, M. C. K., Rooney, J. P., Ryde, I. T., Bernal, A. J., Bess, A. S., Crocker, T. L., Ji, A. Q., & Meyer, J. N. (2013). Effects of early life exposure to ultraviolet C radiation on mitochondrial DNA content, transcription, ATP production, and oxygen consumption in developing Caenorhabditis elegans. BMC Pharmacology and Toxicology, 14. https://doi.org/10.1186/2050-6511-14-9
Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., & Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable Energy, 34(1), 1–5. https://doi.org/10.1016/j.renene.2008.04.014
Papanikolaou, S., & Aggelis, G. (2011). Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 113(8), 1031–1051. https://doi.org/10.1002/ejlt.201100014
Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie, 86(11), 807–815. https://doi.org/10.1016/j.biochi.2004.09.017
Ratledge, C., & Wynn, J. P. (2002). The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, 51, 1–52. https://doi.org/10.1016/S0065-2164(02)51000-5
Reed, N. G. (2010). The history of ultraviolet germicidal irradiation for air disinfection. Public Health Reports, 125(1), 15–27. https://doi.org/10.1177/003335491012500105
Sinha, R. P., & Häder, D. P. (2002). UV-induced DNA damage and repair: A review. Photochemical and Photobiological Sciences, 1(4), 225–236. https://doi.org/10.1039/b201230h
Sitepu, I. R., Garay, L. A., Sestric, R., Levin, D., Block, D. E., German, J. B., & Boundy-Mills, K. L. (2014). Oleaginous yeasts for biodiesel: Current and future trends in biology and production. Biotechnology Advances, 32(7), 1336–1360. https://doi.org/10.1016/j.biotechadv.2014.08.003
Tachioka, M., Sugimoto, N., Nakamura, A., Sunagawa, N., & Ishida, T. (2016). Biotechnology for Biofuels Development of simple random mutagenesis protocol for the protein expression system in Pichia pastoris. Biotechnology for Biofuels, 1–10. https://doi.org/10.1186/s13068-016-0613-z
Winston, F. (2008). EMS and UV mutagenesis in yeast. Current Protocols in Molecular Biology, SUPPL. 82, 1–5. https://doi.org/10.1002/0471142727.mb1303bs82
Yamazaki, A., Kanti, A., & Kawasaki, H. (2017). Three novel lipomycetaceous yeasts, Lipomyces maratuensis sp. nov., Lipomyces tropicalis sp. nov., and Lipomyces kalimantanensis f.a., sp. nov. isolated from soil from the Maratua and Kalimantan Islands, Indonesia. Mycoscience, 58(6), 413–423. https://doi.org/10.1016/j.myc.2017.06.002
DOI: https://doi.org/10.15408/kauniyah.v17i2.29300 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
This work is licensed under a CC-BY- SA.
Indexed By:
  Â