The Utilization of Lichen As Biomonitoring NO2 Gas Emission in The City of Palembang
Abstract
Abstract
This study aims to determine the type of lichen as a bioindicator of air pollution and its potential in biomonitoring NO2 gas emissions in the air using the index of atmospheric purity (IAP) calculation method. The research area was divided into 4 sampling stations. One location is a motorised traffic-free area designated as station 1. Station 2, 3, and station 4 are areas located on roads with different motorised traffic densities. At stations 1, 2, 3 and 4, NO2 pollutant levels were measured following the SNI 19–7119.2–2005 procedure with the Griess Saltzman method. Furthermore, at the same station, the pollution level was also determined by calculating the IAP value. Based on the IAP value, the pollution level at the research area station is in the low-very high category with NO2 gas pollution levels in the range of 7.95–12.1 μg/Nm3/hour. There are 8 species of lichen whose presence can serve as bioindicators of NO2 pollution in the air. These species are Graphis sp., Lecanora sp., Lepraria sp., Dirinaria sp., Graphis scripta, Canoparmelia sp., Ochrolechia sp., and Lecidella elaeochroma. The results of the average measurement of NO2 levels show that NO2 levels at the four sampling stations are still in a safe status because they are still below the air quality standards. The IAP value has a negative correlation with NO2 levels in the air, where the higher the NO2 levels in the air, the lower the IAP value, otherwise if the NO2 levels in the air are lower, the IAP value will be higher. The Pearson Correlation test shows that there is a negative relationship (unidirectional relationship) between NO2 levels in the air and IAP values. The higher the pollutants in an area, the lower the number of colonies and area of lichen cover on trees, especially in lichen species that are sensitive to air pollution.
Abstrak
Penelitian ini bertujuan untuk mengetahui jenis lichen sebagai bioindikator pencemaran udara dan potensinya dalam biomonitoring emisi gas NO2 di udara dengan metode perhitungan index of atmospheric purity (IAP). Area penelitian dibagi menjadi atas 4 stasiun sampling. Satu lokasi merupakan area bebas lintasan kendaraan bermotor yang ditetapkan sebagai stasiun 1. Stasiun 2, 3, dan stasiun 4 yaitu area yang berada pada ruas jalan dengan kepadatan lalu lintas kendaraan bermotor yang berbeda. Pada stasiun 1, 2, 3 dan 4 diukur kadar pencemar NO2 mengikuti prosedur SNI 19–7119.2–2005 dengan metode Griess Saltzman. Selanjutnya, pada stasiun yang sama ditentukan pula tingkat pencemarannya dengan menghitung nilai IAP. Berdasarkan nilai IAP, tingkat pencemaran pada stasiun area penelitian berada pada kategori rendah-sangat tinggi dengan kadar pencemar gas NO2 berada pada kisaran 7,95–12,1 μg/Nm3/jam. Ada 8 jenis lichen yang kehadirannya dapat berfungsi sebagai bioindikator pencemaran NO2 di udara. Jenis tersebut adalah Graphis sp, Lecanora sp., Lepraria sp., Dirinaria sp., Graphis scripta, Canoparmelia sp., Ochrolechia sp., dan Lecidella elaeochroma. Hasil pengukuran rata-rata kadar NO2 menunjukkan bahwa kadar NO2 di empat stasiun pengambilan sampel masih dalam status aman karena masih di bawah baku mutu udara. Nilai IAP memiliki korelasi negatif dengan kadar NO2 di udara, dimana semakin tinggi kadar NO2 di udara, maka nilai IAP akan semakin rendah, sebaliknya jika kadar NO2 di udara semakin rendah, maka nilai IAP akan semakin tinggi. Melalui uji Korelasi Pearson, menunjukkan bahwa terdapat hubungan negatif (hubungan tidak searah) antara kadar NO2 di udara dengan nilai IAP. Semakin tinggi polutan di suatu area, semakin rendah jumlah koloni dan luas penutupan lichen pada pohon, terutama pada jenis lichen yang sensitif terhadap polusi udara.
Keywords
Full Text:
PDFReferences
Agnan, Y., Probst, A., & Séjalon-Delmas, N. (2017). Evaluation of lichen species resistance to atmospheric metal pollution by coupling diversity and bioaccumulation approaches: A new bioindication scale for French forested areas. Ecological Indicators. 27: 99ï€110.
Ahmadjian, V. & Hale, M. E. (1973). The Lichens. New York: Academic Press.
Badan Standardisasi Nasional. (2005). SNI 19-7119.2-2005 Tentang cara uji kadar nitrogen dioksida (NO2) dengan metode Griess Saltzman menggunakan spektrofotometer. Jakarta: BSN.
Boonpragob, K. (2003). Using Lichens as Bioindicaor of Airpollution. (Online). http://www.pcd.go.th/count/airdl/FileName=31_LichenAcidDep.
Brodo, I.M., Sharnoff, S.D. & Sharnoff, S. (2001). Lichens of North America. New Haven: Yale University Press.
Çelik, M. B & Kadi, I. (2007). The relation between meteorological factors and pollutants concentrations in Karabük City. G. U. Journal of Science. 20(4): 87ï€95.
Conti, M. E. & Checcetti, G. (2001). A Biological monitoring: Lichens as bioindicators of air pollution assessment - A review. Environmental Pollution. 7491: 471–492.
Das, P., Joshi, S., Rout, J., & Upreti, D. (2013). Lichen diversity for environmental stress study: Application of index of atmospheric purity (IAP) and mapping around a paper mill in Barak Valley. Tropical Ecology. 54: 355–364.
Davies, L., Bates, J. W., Bell, J. N. B., James, P. W., & Purvis, O. W. (2006). Diversity and sensitivity of epiphytes to oxides of nitrogen in London. Environmental Pollution. 146: 299–310.
Driejana & Handika, R. A. (2013). Polusi udara dalam rumah sekitar jalan raya: Intrusi NO2 dari transportasi dan gangguan pernapasan pada penghuni rumah. Jurnal Teknik Lingkungan UNAND. 10(2): 119–132.
Fandani, S. T. (2017). Tingkat pencemaran udara di desa Silo dan desa Pace, kecamatan Silo, kabupaten Jember dengan menggunakan lichen sebagai bioindikator. Berkala Saintek. Jember: Universitas Jember.
Kuldeep, S. & Prodyut, B. (2015). Lichen as bio-indicator tool for assesment of climate and air pollution vulnerability: Review. Int. Res. J. Environment Sci. 4(12): 107–117.
LeBlanc, S. C. F. & Sloover, J. D.(1970). Relation between industrialization and the distribution and growth of epiphytic lichens and mosses in Montreal. Canadian Journal of Bot. 48: 1485ï€1496.
National Expert Group on Transboundary Air Pollution (NEGTAP). (2001). Transboundary air pollution: Acidification, eutrophication and ground-level ozone in the UK. CEH, Edinburgh.
Sánchez-Ccoyllo, O. R., & Andrade, M. de F. (2002). The influence of meteorological conditions on the behavior of pollutants concentrations in Sao Paulo, Brazil. Environmental Pollution, 116, 257-263.
Sari, M., Santi, D. N., & Cahaya, I. (2013). Analisis kadar co dan no2 di udara dan keluhan gangguan saluran pernapasan pada pedagang kaki lima di pasar Sangkumpal Bonang Kota Padangsidimpuan tahun 2013. Jurnal Kesehatan Lingkungan & Keselamatan Kerja, 3(1), 1-9.
Oliver, M., Geiser, L., & Jovan, S. D. (2011). Canaries in a coal mine: Using lichens to meassure nitrogen pollution. Science Findings, Science Findings 131. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.
World Health Organization. (2011). Air quality guidelines - Second edition: Chapter 7.1: Nitrogen Dioxide. 1–33.
Zulkifli, H. (2011). Kerusakan struktur, morfologi dan biokimia tanaman sebagai bioindikator penurunan kualitas udara perkotaan. Majalah Ilmiah Sriwijaya. 18(11): 623–633.
DOI: https://doi.org/10.15408/kauniyah.v17i2.27943 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
This work is licensed under a CC-BY- SA.
Indexed By:
  Â