Pengembangan Primer Diagnostik Menggunakan Penanda mat-K Secara In Silico untuk Mendeteksi Kelangkaan Jenis Tumbuhan Di Indonesia

Hanina Dzikrina, Topik Hidayat, Siti Sriyati

Abstract


Indonesia merupakan negara dengan kekayaan biodiversitas tertinggi di dunia. Terdapat sekitar 40.000 jenis tumbuhan yang tumbuh di Indonesia dan sebagian besar tumbuhan sudah menunjukkan kelangkaan. Penentuan kelangkaan suatu jenis tumbuhan dapat diketahui berdasarkan distribusi populasinya, namun membutuhkan waktu yang cukup lama. Ketidakstabilan genom akan terjadi pada jenis tumbuhan langka, karena tidak mampu beradaptasi pada ekosistem. Banyaknya tumbuhan yang terancam punah dan habitat asli yang rusak, maka mengharuskan para peneliti untuk mengetahui keberadaan dan melakukan pendataan terhadap keragaman jenis tumbuhan di Indonesia secara cepat. DNA barcoding merupakan teknik yang dikembangkan untuk mempercepat dan mempermudah proses identifikasi organisme dengan menggunakan potongan DNA tertentu. Tujuan dari penelitian ini adalah mencari primer spesifik untuk mendeteksi status kelangkaan pada tumbuhan menggunakan penanda mat-K secara in silico. Gen mat-K merupakan penanda umum yang direkomendasikan untuk analisis pada tumbuhan. Metode yang digunakan yaitu dengan pendekatan secara in silico karena waktu yang diperlukan relatif lebih singkat dan murah. Penelitian ini berhasil mendapatkan sepasang primer forward 1:F_1635–1657 dan primer reverse 1:R_2093–2113 dengan persentase keberhasilan amplifikasi yang dicapai sebesar 66%. Kedepannya, primer ini dapat digunakan untuk mengidentifikasi status kelangkaan pada tumbuhan.

Abstract

Indonesia is a country with the highest biodiversity wealth in the world. There are around 40,000 types of plants that grow in Indonesia and most of the plants are rare. Determining the rarity of a plant type can be determined based on its population distribution, but it takes quite a long time. Genome instability will occur in rare plant species, because they are unable to adapt to the ecosystem. The large number of plants that are threatened with extinction and their natural habitats are damaged requires researchers to quickly identify the existence and collect data on the diversity of plant species in Indonesia. DNA barcoding is a technique developed to speed up and simplify the process of identifying organisms using certain pieces of DNA. The aim of this research is to look for specific primers to detect rarity status in plants using mat-K markers in silico. The mat-K gene is a general marker recommended for analysis in plants. The method used is an in silico approach because the time required is relatively shorter and cheaper. This research succeeded in obtaining a pair of forward primers 1:F_1635–1657 and reverse primers 1:R_2093–2113 with a successful amplification percentage of 66%. In the future, this primer can be used to identify rarity status in plants.


Keywords


Desain primer; Tumbuhan langka; DNA barcode; mat-K; Primer design; Rare plants

Full Text:

PDF

References


Abidin, D. Z., Purnomo., & Pradhana, C. (2020). Keanekaragaman hayati sebagai komunitas: Berbasis Autentitas kawasan. Jombang: Penerbit Fakultas Pertanian Universitas KH Wahab Hasbullah Jombang Press.

Bangol, I., Momuat, L. I., & Kumaunang, M. (2014). Barcode DNA tumbuhan pangi (Pangium edule R.) berdasarkan gen matk. Jurnal MIPA, 3(2), 113. doi: 10.35799/jm.3.2.2014.5862.

Barthet, M. M. (2006). Expression and function of the chloroplast-encoded gene matk (Disertasi doktoral). Virginia Polytechnic Institute and State University, Virginia, US.

Borah, P. (2011). Primer designing for pcr. Science Vision, 11(3), 134-136.

CBOL. (2009). A DNA barcode for land plants: Supporting information. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12794-12797.

Cheng, Y., Nicolson, R. G., Tripp, K., & Chaw, S. M. (2000). Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matk gene and nuclear rdna its region. Molecular Phylogenetics and Evolution, 14(3), 353-65. doi: 10.1006/mpev.1999.0710. PMID: 10712841.

Duangjai, S., Wallnofer, B., Samuel, R., Munzinger, J., & Chase, M. W. (2006). Generic delimitation and relationships in Ebenaceae sensu lato; evidence from six plastid dna regions. American Jounal of Botany, 93(12), 1808-1827.

Fakih, T. M., Wijaya, S., & Priani, S. E. (2021). Desain primer gen 12s srna dari dna mitrokondria babi (sus scrofa) secara in silico sebagai kandidat primer dalam analisis molekuler kehalalan produk. Jurnal Sains Farmasi & Klinis, 8(3), 316. doi: 10.25077/jsfk.8.3.316-322.2021.

Guo, Y. Y., Luo, Y. B., Liu, Z. J., & Wang, X. Q. (2012). Evolution and biogeography of the slipper orchids: Eocene vicariance of the conduplicate genera in the old and new world tropics. PLoS One, 7(6), e38788. doi: 10.1371/journal.pone.0038788. Epub 2012 Jun 7. PMID: 22685605; PMCID: PMC3369861.

Gusmiaty, ., Restu, M., & Pongtuluran, I. (2012). SELEKSI PRIMER UNTUK ANALISIS KERAGAMAN GENETIK JENIS BITTI (Vitex coffassus). Perennial, 8(1), 25. https://doi.org/10.24259/perennial.v8i1.211

Handoyo, D., & Rudiretna, A. (2001). Prinsip umum dan pelaksanaan polymerase chain reaction (pcr). Unitas, 9(1), 17-29.

Heckenhauer, J., Salim, K. A., Chase, M. W., Dexterr, K. G., Pennington, R. T., Tan, S., … Samuel, R.. (2017). Plant dna barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo). Plos one, 1-24.

Hidayat, T., Pancoro, A., & Kusumawaty, D. (2011). Utility of matk gene to assess evolutionary relationship of genus Mangifera (Anacarciaceae) in Indonesia and Thailand. BIOTROPIA, 18(2), 74-80.

Johnson, A. D. (2010). An extended iupac nomenclature code for polymorphic nucleic acids. Bioinformatics, 26(10), 1386-1389. doi: 10.1093/bioinformatics/btq098.

Kalendar, R., Lee, D., & Schulman, A. H. (2011). Java web tools for pcr, in silico pcr, and oligonucleotide assembly and analysis. Genomics, 98(2), 137-144. doi: 10.1016/j.ygeno.2011.04.009.

Kalendar, R., Khassenov, B., Ramankulov, Y., Samuilova, O., & Ivanov, K. I. (2017). FastPCR: An in silico tool for fast primer and probe design and advanced sequence analysis. Genomics, 109(3-4), 312-319. doi: 10.1016/j.ygeno.2017.05.005.

Kolondam, B. J., Lengkong, E., Polii-Mandang, J., Pinaria, A., Runtunuwu, S., Biologi, J., … Program, S. A. (2012). Barcode DNA berdasarkan gen rbcl dan matk anggrek payus limondok (Phaius tancarvilleae) (dna barcode of payus limondok orchid (Phaius tancarvilleae) based on the rbcl and matk genes). Retrieved from www.boldsystems.org.

Kocyan, A., Qiu, Y. L., Endress, P K., & Conti, E. (2004). A phylogenetic analysis of Apostasioideae (Orchidaceae) based on its, trnl-f and matk sequences’. Plant Systematics and Evolution, 247, 203-213.

Kress, W. J. (2017). Plant dna barcodes: Applications today and in the future. Journal of Systematics and Evolution, 55(4), 291-307. doi: 10.1111/jse.12254.

Kress, W. J., Prince, L. M., & Williams, K. J. (2002). The phylogeny and a new classification of the gingers (Zingiberaceae): Evidence from molecular data. American Journal of Botany, 89, 1682-1696.

Kusmana, C., & Hikmat, A. (2015). The biodiversity of flora in Indonesia. Journal of Natural Resources and Environmental Management, 5(2), 187-198. doi: 10.19081/jpsl.5.2.187.

Liljas, L. (2013). Consensus sequences. In S. Maloy, & K. Hughes (Eds.). Brenner’s encyclopedia of genetics: Second edition vol. 2 (pp. 163). Elsevier Inc. doi: 10.1016/B978-0-12-374984-0.00325-9.

Lucas, C., Thangaradjou, T., & Papenbrock, J. (2012). Development of a DNA barcoding system for seagrasses: Successful but not simple. PLoS ONE, 7(1). https://doi.org/10.1371/journal.pone.0029987

Mast, A. R., Willis, C. L., Jones, E. H., Downs, K. M., & Weston, P. H. (2008). A smaller macadamia from a more vagile tribe: Inference of phylogenetic relationships, divergence times, and diaspore evolution in macadamia and relatives (tribe Macadamieae; Proteaceae). American Journal of Botany, 95(7), 843-70. doi: 10.3732/ajb.0700006. PMID: 21632410.

Meimberg, H., Wistuba, A., Dittrich, P., & Heubl, G. (2008). Molecular phylogeny of Nepenthaceae based on cladistic analysis of plastid trnk intron sequence data. Plant Biology, 3(2), 164-175. doi: 10.1055/s-2001-12897.

Nurkamila, U. S., & Pharmawati, M. (2014). Ekstraksi dna dari herbarium anggrek. Simbiosis: Journal of Biological Sciences, 2(1).

Nuryady, M. M., Husamah, H., Miharja, F. J., Hindun, I., & Patmawati, P. (2020). Desain dan Optimasi Primer Gen Pengkode MRPA Trypanosoma evansi dan Penerapan pada Pembelajaran Biologi Molekuler. Jurnal Penelitian Dan Pengkajian Ilmu Pendidikan: E-Saintika, 4(2), 223–233. https://doi.org/10.36312/e-saintika.v4i2.217.

Pradnyaniti, D., Wirajana, I., & Yowani, S. C. (2010). Desain primer secara in silico untuk amplifikasi fragmen gen rpob Mycobacterium tuberculosis. Jurnal Farmasi Udayana, 124-130.

Rahayu, D. A., & Jannah, M. (2019). Dna barcode hewan dan tumbuhan Indonesia. Jakarta: Yayasan Inspirasi Ide Berdaya.

Shabrina, H., Siregar, U. J., Matra, D. D., & Siregar, I. (2020). Konfirmasi jenis dan keragaman genetik sengon resisten dan rentan infeksi karat tumor menggunakan penanda dna kloroplas. Jurnal Penelitian Hutan Tanaman, 17(2), 117-130.

Sulistiani, E. S., Hesti, H. S., & Rony, I. (2020). Inventarisasi dan persebaran tumbuhan langka di Kebun Raya Purwodadi. Prosiding Seminar Nasional Biologi FMIPA UNM Inovasi Penelitian Biologi dan Pembelajarannya di Era Merdeka Belajar, 7(1), 186-195.

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The clustal x windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876-4882. doi: 10.1093/nar/25.24.4876.

Valentini, A., Pompanon, F., & Taberlet, P. (2009). DNA barcoding for ecologists. Trends in Ecology and Evolution, 24(2), 110-117. doi: 10.1016/j.tree.2008.09.011.

Widyatmoko, D. (2019). Strategi dan inovasi konservasi tumbuhan Indonesia untuk pemanfaatan secara berkelanjutan. Paper presented at the Seminar Nasional Pendidikan Biologi dan Saintek (SNPBS) Ke-IV 2019, Universitas Muhammadiyah Surakarta, Indonesia. Retrieved from https://publikasiilmiah.ums.ac.id/handle/11617/11287.

Williams, K. J., Kress, W. J., & Manos, P. S. (2004). The phylogeny, evolution, and classification of the genus Globba and tribe Globbeae (Zingiberaceae): Appendages do matter. American Journal of Botany, 91(1), 100-114. doi: 10.3732/ajb.91.1.100.

Witarto, A. B., & Sajidan. (2010). Bioinformatika: Trend dan prospek dalam pengembangan keilmuan biologi. Prosiding Seminar Biologi, 7(1), 15-16.

Wu, C. S., Wang, Y. N., Hsu, C. Y., Lin, C. P., Chaw, S. M. (2011). Loss of different inverted repeat copies from the chloroplast genomes of Pinaceae and Cupressophytes and influence of heterotachy on the evaluation of gymnosperm phylogeny. Genome Biology and Evolution, 3, 1284-95. doi: 10.1093/gbe/evr095. Epub 2011 Sep 19. PMID: 21933779; PMCID: PMC3219958.

Xu, S., Li, D., Li, J., Xiang, X., Jin, W., Huang, W., & Huang, L. (2015). Evaluation of the dna barcodes in dendrobium (Orchidaceae) from Mainland Asia. PLoS ONE, 10(1). doi: 10.1371/journal.pone.0115168.

Yustinadewi, P. D., Yustiantara, P. S., & Narayani, I. (2018). Mdr-1 gene 1199 variant primer design techniques in pediatric patient buffy coat samples with lla. Metamorfosa: Journal of Biological Sciences, 5(1), 105. doi: 10.24843/metamorfosa.2018.v05.i01.p16.




DOI: https://doi.org/10.15408/kauniyah.v17i1.27538 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120