Potensi Cendawan Xylaria sp. Sebagai Sumber Antioksidan

Handika Dwi Prasetyo, Sri Listiyowati, Irmanida Batubara

Abstract


 Abstrak

Pencegahan radikal bebas di dalam tubuh dapat dilakukan dengan menggunakan antioksidan. Cendawan Xylaria memiliki kandungan senyawa bioaktif yang berasal dari metabolit sekunder yang berpotensi sebagai sumber antioksidan alami baru. Penelitian ini bertujuan menentukan potensi Xylaria sp. (strain F, D, C) sebagai sumber antioksidan melalui pengukuran aktivitas antioksidan dan kandungan total flavonoidnya. Cendawan ditumbuhkan pada media Potato Dextrose Yeast Extract Broth (PDYEB) dan diinkubasi 14 hari dengan kondisi gelap dan statis. Miselium cendawan digerus dengan bantuan nitrogen cair, kemudian ekstraksi dilakukan menggunakan pelarut metanol sebanyak dua kali ulangan. Penentuan aktivitas antioksidan menggunakan metode 2,2-Diphenyl-1-picrylhydrazyl (DPPH) dan kandungan total flavonoid ditentukan menggunakan metode alumunium klorida (AlCl3) yang dinyatakan ekuivalen kuersetin (QE). Seluruh sampel Xylaria sp. memiliki aktivitas antioksidan yang lemah dan kandungan flavonoid yang juga rendah. Xylaria sp. strain F memiliki aktivitas antioksidan tertinggi sebesar 1915,14 ± 24,73 µg/mL dan Xylaria sp. strain D memiliki kandungan total flavonoid tertinggi sebesar 2,41 ± 0,09 mg QE/g ekstrak. Senyawa flavonoid pada sampel Xylaria sp. tidak menjadi senyawa utama yang menunjukkan aktivitas antioksidannya.

Abstract

Prevention of free radicals in the body can be done by using antioxidants. Xylaria fungus contains bioactive compounds derived from secondary metabolites that have the potential as a source of new natural antioxidants. This study aims to determine the potential of Xylaria sp. (strains F, D, C) as a source of antioxidants by measuring their antioxidant activity and total flavonoid content. The fungus was grown on Potato Dextrose Yeast Extract Broth (PDYEB) and incubated for 14 days in dark and static conditions. The mycelium of the fungus was crushed with the help of liquid nitrogen, then the extraction was carried out using methanol as a solvent for two repetitions. Antioxidant activity was determined using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) method and the total flavonoid content was determined using the alumunium chloride (AlCl3) method which is expressed as quercetin equivalent (QE). All samples of Xylaria sp. have the weakest antioxidant activity and lowest flavonoid content. Xylaria sp. strain F had the highest antioxidant activity of 1915,14 ± 24,73 µg/mL and Xylaria sp. strain D had the highest total flavonoid content of 2,41 ± 0,09 mg QE/g extract. The flavonoid compounds in the sample Xylaria sp. did not become the main compound showing antioxidant activity.


Keywords


DPPH; Flavonoid; IC50; Radikal bebas; Xylaria sp.; Flavonoid; Free radicals;

Full Text:

PDF

References


Achmad., Herlyana, E. N., & Octaviani, E. A. (2013). Pengaruh pH, penggoyangan media, dan penambahan serbuk gergaji terhadap pertumbuhan jamur Xylaria sp. Jurnal Silvikultur Tropika, 4(2), 57-61.

Adnan, M., Patel, M., Reddy, M. N., & Alshammari, E. (2018). Formulation, evaluation and bioactive potential of Xylaria primorskensis terpenoid nanoparticles from its major compound xylaranic acid. Scentific Reports, 8(1740), 1-10. doi: 10.1038/s41598-018-20237-z.

Agarwal, A., Aponte-Mellado, A., Premkumar, B. J., Shaman, A., & Gupta, S. (2012). The effects of oxidative stress on female reproduction: a review. Reproductive Biology and Endocrinology, 10(49), 1-31. doi: 10.1186/1477-7827-10-49.

Agastian, P., Merlin, J. N., Nimal, C., & Praveen, K. P. (2013). Optimization of growth and bioactive metabolite production: Fusarium solani. Asian Journal of Pharmaceutical and Clinical Research, 6(3), 98-103.

Ahmed, F., & Iqbal, M. (2018). Antioxidant activity of Ricinus Communis. Organic & Medicinal Chemistry International Jorunal, 5(4), 107-112. doi: 10.19080/OMCIJ.2018.05.555667.

Asmat, U., Abad, K., & Ismail, K. (2016). Diabetes mellitus and oxidative stress-a concise review. Saudi Pharmaceutical Journal, 24(5), 547-553. doi: 10.1016/j.jsps.2015.03.013.

Aytar, E. C., Akata, I., & Acik, L. (2020). Antioxidant and antimicrobial activities of Armillaria mellea and Macrolepiota procera extracts. The Journal of Fungus, 11(2), 121-128. doi: 10.30708.mantar.680496.

Bahriul, P., Rahman, N., & Diah, A. W. M. (2014). Uji aktivitas antioksidan ekstrak daun salam (Syzgium polyanthum) dengan menggunakan 1,1-difenil-2-pikrilhidrazil. Jurnal Akademi Kimia, 3(3), 143-149.

Chairunnisa, S., Wartini, N. M., & Suhendra, L. (2019). Pengaruh suhu dan waktu maserasi terhadap karakteristik ekstrak daun bidara (Ziziphus mauritiana L.) sebagai sumber saponin. Jurnal Rekayasa dan Manajemen Agroindustri, 7(4), 551-560. doi: 10.24843/JRMA.2019.v07.i04.p07.

Cheeseman, K. H., & Slater, T. F. (1993). An introduction to free radicals chemistry. British Medical Bulletin, 49(3), 481-93. doi: 10.1093/oxfordjournals.bmb.a072625.

Dhanani, T., Shah, S., Gajbhiye, N., & Kumar, S. (2017). Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arabian Journal of Chemistry, 10, 1193-1199. doi: 10.1016/j.arabjc.2013.02.015.

Divate, R. D., Wang, P. M., Wang, C. C., Chou, S. T., Chang, C. T., & Chung, Y. C. (2017). Protective effect of medicinal fungus Xylaria nigripes mycelia extracts against hydrogen peroxide-induced apoptosis in PC12 cells. International journal of immunopathology and pharmacology, 30(1), 105-112. doi: 10.1177/0394632017695280.

Djakaria, S. A., Batubara, I., & Raffiudin, R. (2020). Antioxidant and antibacterial activity of selected Indonesian honey against bacteria of acne. Journal of Scientific and Applied Chemistry, 23(8), 267-275. doi: 10.14710/jksa.23.8.267-275.

Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y. H. (2013). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296-302. doi: 0.1016/j.jfda.2013.11.001.

Fang, Y. Z., Yang, S., & Wu, G. (2002). Free radicals, antioxidants, and nutrition. Nutritions, 18(10), 872-879. doi: 10.1016/s0899-9007(02)00916-4.

Fowler, J., Cohen, L., & Jarvis, P. (1998). Practical statistics for field biology. Chichester: John Wiley & Sons.

Frantika, S. S. A., & Purnaningsih, T. (2016). Studi etnomikologi pemanfaatan jamur karamu (Xylaria sp.) sebagai obat tradisional suku Dayak Ngaju di desa Lamunti. Proceeding Biology Education Conference: Biology, Science, Enviromental, and Learning, 13(1), 633- 636.

Gąsecka, M., Mleczek, M., Siwulski, M., Niedzielski, P. (2016). Phenolic composition and antioxidant properties of Pleurotus ostreatus and Pleurotus eryngii enriched with selenium and zinc. European Food Research and Technology, 242, 723–732. doi: 10.1007/s00217-015-2580-1.

Gunasekaran, S., Sathiavelu, M., & Arunachalam, S. (2017). In vitro antioxidant and antibacterial activity of endophytic fungi isolated from Mussaenda luteola. Journal of Applied Pharmaceutical Science, 7(8), 234-238. doi: 10.7324/JAPS.2017.70832.

González-Montelongo, R., Lobo, Gloria., & Gonzalez, Monica. (2010). The effect of extraction temperature, time and number of steps on the antioxidant capacity of methanolic banana peel extracts. Separation and Purification Technology, 71(3), 347-355. doi: 10.1016/j.seppur.2009.12.022.

Hameed, A., Hussain, S. A., Yang, J., Ijaz, M. U., Liu, Q., Suleria, H., & Song, Y. (2017). Antioxidants potential of the filamentous fungi (Mucor circinelloides). Nutrients, 9(10), 1101. doi: 10.3390/nu9101101.

Henriksen, E. J. (2019). Role of oxidative stress in the pathogenesis of insulin resistance and type 2 diabetes. In R. R. Watson, & V. R. Preedy (Eds.), Bioactive food as dietary interventions for diabetes (second edition) (pp. 3-17). Amsterdam: Academic Press.

Kadum, H., Hamid, A. A., Abas, F., Ramli, N. S., Mohammed, A. K. S., Muhialdin, B. J., & Jaafar, A. H. (2019). Bioactive compounds responsible for antioxidant activity of different varieties of date (Phoenix dactylifera L.) elucidated by 1H-NMR based metabolomics. International Journal of Food Properties, 22(1), 462-476. doi: 10.1080/10942912.2019.1590396.

Khoddami, A., Wilkes, M. A., & Roberts, T. H. (2013). Techniques for analysis of plant phenolic compounds. Molecules, 18(2), 2328-2375. doi: 10.3390/molecules18022328.

Kikuzaki, H., Hisamoto, M., Hirose, K., Akiyama, K., & Taniguchi, H. (2002). Antioxidants properties of ferulic acid and it’s related compound. Journal of Agricurtural Food Chemistry, 50(7), 2161-2168. doi: 10.1021/jf011348w.

Kruk, J., & Duchnik, E. (2014). Oxidative stress and skin diseases: Possible role of physical activity. Asian Pacific Journal Cancer Prevention, 15(2), 561-568. doi: 10.7314/APJCP.2014.15.2.561.

Li, M., Pare, P. W., Zhang, J., Kang, T., Zhang, Z., Yang, D., … Xing, H. (2018). Antioxidant capacity connection with phenolic and flavonoid content in Chinese medicinal herbs. Records of Natural Products, 12(3), 239-250.

Liu, X., Dong, M., Chen, X., Jiang, M., Xin, L., & Yan, G. (2007). Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chemistry, 105, 548-554. doi: 10.1016/j.foodchem.2007.04.008.

Liu, Z., Zhou, T., Ziegler, A. C., Dimitrion, P., & Zuo, L. (2017). Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxidative Medical Cell Longevity, 2017, 2525967. doi: 10.1155/2017/2525967.

Ma, Y. P., Mao, D. B., Geng, L. J., Zhang, W. Y., Wang, Z., & Xub, C. P. (2013). Production optimization, molecular characterization and biological activities of exopolysaccharides from Xylaria nigripes. Chemical and Biochemical Engineering Quartery, 27(2), 177-184.

Matsuri, Alighiri, D., Nuzulina, K., Rodhiyah, M., & Drastisianti, A. (2019). Optimization of condition extraction in quantification of total flavonoid content in the seeds of the arummanis (Mangifera indica L.) mango from Indonesia. Journal of Physics: Conference Series, 1321(2), 1-6. doi: 10.1088/1742-6596/1321/2/022041.

Mathan, S., Subramanian, V., & Nagamony, S. (2013). Optimization and antimicrobial metabolite production from endophytic fungus Aspergillus terreus KC 582297. European Journal Experiment Biology, 3(4), 138-144.

Mattoon, E. R., Cordero, R. J. B., & Casadevall, A. (2021). Fungal melanins and applications in healthcare, bioremediation and industry. Journal of Fungi, 7(6), 488. doi: 10.3390/jof7060488.

Mihai, R. A., Heras, E. J. M., Florescu, L. I., & Catana, R. D. (2022). The edible gray oyster fungi Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm a potent waste consumer, a biofriendly species with antioxidant activity depending on the growth substrate. Journal of Fungi, 8(3), 274. doi: 10.3390/jof8030274.

Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (dpph) for estimating antioxidant activity. Songklanarin Journal of Science and Technology, 6(3), 541-551.

Monkai, J., Chukeatirote, E., Chamyuang, S., Synytsya, A., Ruml, T., & Hyde, K. D. (2013). Antimicrobial activity of some saprobic fungi isolated from Magnolialiliifera and Cinnamomum iners leaves. Mycology, 4(2), 82-84. doi: 10.1080/21501203.2013.801044.

Osono, T. (2020). Decomposition of organic chemical components in wood by tropical Xylaria species. Journal of fungi, 6(4), 186. doi: 10.3390/jof6040186.

Park, S., Lee, J. Y., Lim, W., You, S., & Song, G. (2019). Butylated hydroxyanisole exerts neurotoxic effects by promoting cytosolic calcium accumulation and endoplasmic reticulum stress in astrocytes. Journal of Agricultural and Food Chemistry, 67(34), 9615-9629. doi: 10.1021/acs.jafc.9b02899.

Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30(1), 11-26. doi: 10.1007/s12291-014-0446-0.

Ramesh, V., Santosh, K., Anand, T. D., Shanmugaiah, V., Kotamraju, S., Karunakaran, C., & Rajendran, A. (2015). Novel bioactive wild medicinal mushroom Xylaria sp. r006 (ascomycetes) against multidrug resistant human bacterial pathogens and human cancer cell lines. International Journal of Medicinal Mushrooms, 17(10), 1005-1017. doi: 10.1615/intjmedmushrooms.v17.i10.100.

Rebbapragada, D., & Kalyanaraman, R. (2016). Evalution and optimization of antioxidant potentiality of Xylaria feejeensis HMJAU22039. Asian Journal of Pharmaceutical and Clinical Research, 9(2), 269-273.

Saeed, N., Khan, M. R., & Shabbir, M. (2012). Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine, 12(221), 1-12. doi: 10.1186/1472-6882-12-221.

Sarmah, R., Bhagabat, S. K., Dutta, R., Nath, D., Pokhrel, H., Mudoi, L. P., … Kuotsu, K. (2020). Toxicity of a synthetic phenolic antioxidant, butyl hydroxytoluene (BHT), in vertebrate model zebrafish embryo (Danio rerio). Aquaculture Research, 51(9), 3839-3846. doi: 10.1111/are.14732.

Sereme, A., Dabire, C., Koala, M., Somda, M. K., & Traore, A. S. (2016). Influence of organic and mineral fertilizers on the antioxidants and total phenolic compounds level in tomato (Solanum lycopersicum) var. mongal F1. Journal of Experimental Biology and Agricultural Sciences, 4 (4), 414-420. doi: 10.18006/2016.4(4).414.420.

Smith, H., Doyle, S., & Murphy, R. (2015). Filamentous fungi as a source of natural antioxidants. Food Chemical, 185, 389-397. doi: 10.1016/j.foodchem.2015.03.134.

Sukkar, S. G., & Rossi, E. (2004). Oxidative stress and nutritional prevention in autoimmune rheumatic diseases. Autoimmunity Reviews, 3(3), 199-206. doi: 10.1016/j.autrev.2003.09.002.

Sultana, B., Anwar, F., & Ashraf, M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14(6), 2167-80. doi: 10.3390/molecules14062167.

Thakur, D., Bora, T. C., Bordoloi, G. N., & Maiumdar, S. (2009). Influence of nutrition and culturing conditions for optimum growth and antimicrobial metabolite production by Streptomyces sp.201. Journal of Medical Mycology, 19(3), 161-167. doi: 10.1016/j.mycmed.2009.04.001.

Tvrda, E., Knazicka, Z., Bardos, L., Massanyi, P., & Lukac, N. (2011). Impact of oxidative stress on male fertility - a review. Acta Veterinaria Hungarica, 59(4), 465-484. doi: 10.1556/AVet.2011.034.

Utami, N. F., Nurdayanty, S. M., Sutanto., & Suhendar, U. (2020). Pengaruh berbagai metode ekstraksi pada penentuan kadar flavonoid ekstrak etanol daun iler (Plectranthus scutellarioides). Fitofarmaka Jurnal Ilmiah Farmasi, 10(1), 76-83. doi: 10.33751/jf.v10i1.2069.

Wang, L., Ding, J. Y., Song, H. C., Shen, K. Z., Wang, L. M., Sun, R., … Zhang, K. Q. (2008). Screening and isolation of antibacterial activities of the fermentative extracts of freshwater fungi from Yunnan Province, China. Annals of Microbiology, 58, 579–584. doi: 10.1007/BF03175561.

Wangsawat, N., Nahar, L., Sarker, S. D., Phosri, C., Evans, A. R., Whalley, A. J. S., …Suwannasai, N. (2021). Antioxidant activity and cytotoxicity against cancer cell lines of the extract from novel Xylaria species associated with termite nests and LC-MS anaylsis. Antioxidant, 10(10), 1557. doi: 10.3390/antiox10101557.

Yamanaka, T. (2003). The effect of ph on the growth of saprotrophic and ectomycorrhizal ammonia fungi in vitro. Mycologia, 95(4), 584-589. doi: 10.2307/3761934.

Zeroual, A., Sakar, E. H., Mahjoubi, F., Chaouch, M., Chaqroune, A., & Taleb, M. (2021). Effects of extraction technique and solvent on phytochemicals, antioxidant, and antimicrobial activities of cultivated and wild rosemary (Rosmarinus officinalis L.) from Taounate region (Northern Morocco). Biointerface Research in Applied Chemistry, 12(6). 8441-8452. doi: 10.33263/BRIAC126.84418452.




DOI: https://doi.org/10.15408/kauniyah.v16i2.27386 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120