Pengaruh Fucoidan Terhadap Struktur Hepar Ikan Zebra (Danio rerio, Hamilton 1822) yang Diberi Parasetamol Dosis Tinggi

Nur Indah Septriani, Eben Ezer Simanungkalit, Olvita Mayani, Indah Nur Fauziah, Desy Amelia Saputri, Anggi Rehulina Sitepu, Raafi Nur Ali, Ascarti Adaninggar, Raden Roro Risang Ayu Dewayani, Anita Restu Puji Raharjeng

Abstract


Abstrak

N-asetil-p-aminophenol atau parasetamol merupakan analgesik dan antipiretik yang mudah didapat tanpa resep. Penyalahgunaan dan kesalahan dosis konsumsi dapat menyebabkan kerusakan hepar. Fucoidan memiliki aktivitas hepatoprotektif yang dapat menstimulasi regenerasi hepatosit. Studi ini bertujuan untuk mengamati struktur histologis hepar ikan zebra (Danio rerio, Hamilto 1822) dewasa yang telah diberi perlakuan parasetamol dan fucoidan. Desain penelitian yang digunakan adalah Rancangan Acak Lengkap (RAL) dengan ikan zebra dibagi menjadi empat kelompok perlakuan yaitu kontrol (K) selama 10 hari, parasetamol 5 mM (P) selama 3 hari dilanjutkan air RO selama 7 hari, parasetamol 5 mM selama 3 hari dilanjutkan fucoidan 100 µg/mL (P + F 100) selama 7 hari dan parasetamol 5 mM selama 3 hari dilanjutkan fucoidan 500 µg/mL (P + F 500) dengan ulangan setiap kelompok 6 ekor ikan. Studi berlangsung selama 10 hari, parameter yang diamati adalah histopatologis hepar, berat badan ikan, keaktifan berenang, dan nafsu makan. Pada semua kelompok perlakuan, hasil menunjukkan bahwa struktur histologis hepar ikan zebra mengalami kerusakan jaringan berupa hemoragi, dan kerusakan sel berupa vakuolisasi, piknosis dan nekrosis. Terdapat penurunan aktivitas berenang dan nafsu makan setelah perlakuan parasetamol. Kelompok yang diberi fucoidan mengalami pemulihan aktivitas renang dan nafsu makan. Terdapat perbedaan nyata (P <0,05) kerusakan hepar antara perlakuan kontrol, parasetamol dan pemberian fucoidan. Kelompok P + F 100 dan P + F 500 mengalami pemulihan hepatosit setelah paparan parasetamol. Kelompok P + F 500 memiliki perbaikan yang lebih baik dibandingkan kelompok P + F 100. Hasil pada penelitian ini adalah fucoidan dapat digunakan sebagai agen protektif hepar setelah paparan parasetamol dosis tinggi.

Abstract

N-acetyl-p-aminophenol or paracetamol is an analgesic and antipyretics which can be obtained easily without a prescription. Consumption misuse and wrong dosage intake can lead to liver damage. Fucoidan has hepatoprotective activity that can stimulate hepatocyte regeneration. The aim of this study was to observe the histological liver structure of adult zebrafish that had been treated with paracetamol and fucoidan. The research design used was a completely randomized design (CRD) with zebrafish divided into four treatment groups; control (K) for 10 days, paracetamol 5 mM (P) for 3 days followed by RO water for 7 days, Paracetamol 5 mM for 3 days followed by fucoidan 100 g/mL (P + F 100) for 7 days and Paracetamol 5 mM for 3 days followed by fucoidan 500 g/mL (P + F 500) with replicates for each group of 6 fish. The study lasted for 10 days, data on liver histopathology was evaluated, fish body weight, swimming activity, and appetite was also evaluated. In all treatment groups, the results showed that the histological structure of the zebrafish liver experienced tissue damage in the form of hemorrhage, and cell damage in the form of vacuolization, pyknosis and necrosis. There was a decrease in swimming activity and appetite after paracetamol treatment, the group given fucoidan experienced a recovery in swimming activity and appetite. There was a significant difference (P <0.05) in liver damage between the control, paracetamol and the fucoidan treated groups. The P + F 100 and P + F 500 exhibited hepatocyte recovery after exposure to paracetamol. The P + F 500 group had better improvement than the P + F100 group. The result of this research showed that fucoidan can be used as a protective liver agent after paracetamol high dosage exposure.


Keywords


Aktivitas renang; Fucoidan; Histopatologis hepar; Ikan zebra; Parasetamol; Fucoidan; Histopathological liver; Paracetamol; Swimming activity; Zebrafish

Full Text:

PDF

References


Abdel-Daim, M. M., Dawood, M. A. O., Aleya, L., & Alkahtani, S. (2020). Effects of fucoidan on the hematic indicators and antioxidative responses of Nile tilapia (Oreochromis niloticus) fed diets contaminated with aflatoxin B1. Environmental Science and Pollution Research, 27(11), 12579-12586. doi: 10.1007/s11356-020-07854-w.

Ameer, B., Divoll, M., Abernethy, D. R., Greenblatt, D. J., & Shargel, L. (1983). Absolute and relative bioavailability of oral acetaminophen preparations. Journal of Pharmaceutical Sciences, 72(8), 955-958. doi: 10.1002/JPS.2600720832.

Bai, X., Li, M., Wang, X., Chang, H., Ni, Y., Li, C., … Xu, Z. (2020). Therapeutic potential of fucoidan in the reduction of hepatic pathology in murine schistosomiasis japonica. Parasites and Vectors, 13(1), 1-14. doi: 10.1186/s13071-020-04332-7.

Basu, A., Guti, S., Kundu, S., Das, A., Das, S., & Mukherjee, A. (2020). Oral andrographolide nanocrystals protect liver from paracetamol induced injury in mice. Journal of Drug Delivery Science and Technology, 55(October 2019), 101406. doi: 10.1016/j.jddst.2019.101406.

Berata, I. K., Winaya, I. B. O., Adi, A. A. A. M., & Adnyana, I. B. W., & Kardena, I.M. (2015). Patologi veteriner umum. Denpasar: Swasta Nulus.

Cedron, V. P., Weiner, A. M. J., Vera, M., & Sanchez, L. (2020). Acetaminophen affects the survivor, pigmentation and development of craniofacial structures in zebrafish (Danio rerio) embryos. Biochemical Pharmacology, 174(November 2019), 113816. doi: 10.1016/j.bcp.2020.113816.

Chale-Dzul, J., Moo-Puc, R., Robledo, D., & Freile-Pelegrín, Y. (2015). Hepatoprotective effect of the fucoidan from the brown seaweed Turbinaria tricostata. Journal of Applied Phycology, 27(5), 2123-2135. doi: 10.1007/s10811-014-0429-9.

Chevolot, L., Foucault, A., Chaubet, F., Kervarec, N., Sinquin, C., Fisher, A. M., & Boisson-Vidal, C. (1999). Further data on the structure of brown seaweed fucans: Relationships with anticoagulant activity. Carbohydrate Research, 319(1-4), 154-165. doi: 10.1016/S0008-6215(99)00127-5.

Dai, Y. L., Jiang, Y. F., Nie, Y. H., Lu, Y. A., Kang, M. C., & Jeon, Y. J. (2020). Hepato-protective effect of fucoidan extracted from acid-processed Sargassum fusiformis in ethanol-treated Chang liver cells and in a zebrafish model. Journal of Applied Phycology, 32(6), 4289-4298. doi: 10.1007/s10811-020-02262-6.

Darniwa, A. V., Cahyanto, T., Nurbaeni, S., Adawiyah, A., Ulfa, R. A., & Paujiah, E. (2021). Efek isolasi sosial pada perilaku stres ikan zebra dewasa (Danio rerio). Jurnal Kelautan Dan Perikanan Indonesia, 1(1), 30-34.

Driessen, M., van der Plas-Duivesteijn, S., Kienhuis, A. S., van den Brandhof, E. J., Roodbergen, M., van de Water, B., … Pennings, J.L., (2022). Identification of proteome markers for drug-induced liver injury in zebrafish embryos. Toxicology, 477, 153262.

Ducharme, N. A., Reif, D. M., Gustafsson, J. -A., & Bondesson, M. (2015). Comparison of toxicity values across zebrafish early life stages and mammalian studies: Implications for chemical testing. Reproductive Toxicology, 55, 3-10. doi: 10.1016/j.reprotox.2014.09.005.Comparison.

Fajariyah, S., Utami, E. T., Arisandi, Y., Biologi, J., & Universitas, F. (2010). Efek pemberian estrogen sintetis (diethylstillbestrol ) terhadap struktur hepar dan kadar sgot dan sgpt pada mencit (Mus musculus ) betina strain balb/c. Jurnal Ilmu Dasar, 11(Gmikro), 76-82.

Fukuta, K., & Nakamura, T. (2008). Induction of hepatocyte growth factor by fucoidan and fucoidan-derived oligosaccharides. Journal of Pharmacy and Pharmacology, 60(4), 499-503. doi: 10.1211/jpp.60.4.0013.

Gibson-Corley, K. N., Olivier, A. K., & Meyerholz, D. K. (2013). Principles for histopathologic scoring. Veterinary Pathology, 50(6), 1-22. doi: 10.1177/0300985813485099.

Gomaa, S. (2018). Adverse effects induced by diclofenac, ibuprofen, and paracetamol toxicity on immunological and biochemical parameters in Swiss albino mice. The Journal of Basic and Applied Zoology, 79(1), 1-9. doi: 10.1186/s41936-018-0025-7.

Hayashi, S., Itoh, A., Isoda, K., Kondoh, M., Kawase, M., & Yagi, K. (2008). Fucoidan partly prevents ccl4-induced liver fibrosis. European Journal of Pharmacology, 580(3), 380-384. doi: 10.1016/j.ejphar.2007.11.015.

Ikeda-Ohtsubo, W., López-Nadal, A., Zaccaria, E., Iha, M., Kitazawa, H., Kleerebezem, M., & Brugman, S. (2020). Intestinal microbiota and immune modulation in zebrafish by fucoidan from Okinawa mozuku (Cladosiphon okamuranus). Frontiers in Nutrition, 7(June), 1-12. doi: 10.3389/fnut.2020.00067.

Indriyanti, N. (2020). Zebrafish (Danio rerio) sebagai model hewan coba pada pengujian aktivitas obat. In Proceeding of Mulawarman Pharmaceuticals Conferences, 11, 80-83.

Kardena, I. M., & Winaya, I. B. O. (2011). Kadar perasan kunyit yang efektif memperbaiki kerusakan hati mencit yang dipicu karbon tetrachlorida. Jurnal Veteriner, 12(1), 34-39.

Kataoka, C., Sugiyama, T., Kitagawa, H., Takeshima, A., Kagami, Y., Tatsuta, H., & Kashiwada, S. (2019). Temperature-dependent toxicity of acetaminophen in Japanese medaka larvae. Environmental Pollution (Barking, Essex : 1987), 254(Pt B). doi: 10.1016/J.ENVPOL.2019.113092.

Katapraja, R. D., Fuadi, I., & Redjeki, I. S. (2016). Perbandingan efek pemberian analgesia pre-emtif parecoxib dengan parasetamol terhadap nyeri pascaoperasi radikal mastektomi menggunakan numeric rating scale. Jurnal Anestesi Perioperatif, 4(2), 111-116. doi: 10.15851/jap.v4n2.825.

Kumar, V., Abbas, A. K., & Aster, J. K. (2015). Robbins and cotran pathologic basic of disease (9th ed.). Philadelphia: Elsevier Health Science.

Larsen, F. S., & Wendon, J. (2014). Understanding paracetamol-induced liver failure. Intensive Care Medicine, 40(6), 888-890. doi: 10.1007/s00134-014-3293-9.

Lee, S. H., Ko, C. I., Jee, Y., Jeong, Y., Kim, M., Kim, J. S., & Jeon, Y. J. (2013). Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model. Carbohydrate Polymers, 92(1), 84-89. doi: 10.1016/j.carbpol.2012.09.066.

Li, B., Lu, F., Wei, X., & Zhao, R. (2008). Fucoidan: Structure and bioactivity. Molecules, 13(8), 1671-1695. doi: 10.3390/molecules13081671.

Li, J., Guo, C., & Wu, J. (2020). Fucoidan: Biological activity in liver diseases. American Journal of Chinese Medicine, 48(7), 1617-1632. doi: 10.1142/S0192415X20500809.

Li, J., Chiew, A. L., Isbister, G. K., & Duffull, S. B. (2021). Sulfate conjugation may be the key to hepatotoxicity in paracetamol overdose. British Journal of Clinical Pharmacology, 87(5), 2392-2396. doi: 10.1111/bcp.14642.

Locci, C., Cuzzolin, L., Capobianco, G., & Antonucci, R. (2021). Paracetamol overdose in the newborn and infant: A life-threatening event. European Journal of Clinical Pharmacology, 77(6), 809-815. doi: 10.1007/s00228-020-03077-7.

McGregor, A. H., More, L. J., Simpson, K. J., & Harrison, D. J. (2003). Liver death and regeneration in paracetamol toxicity. Human and Experimental Toxicology, 22(4), 221-227. doi: 10.1191/0960327103ht325oa.

Merdana, I. M., Kardena, I. M., Budiasa, K., & Gunawan, I. M. D. (2019). Histopathological structure of white rats liver after giving ant nest extract due to induced paracetamol toxic dose. Buletin Veteriner Udayana, 21, 14. doi: 10.24843/bulvet.2019.v11.i01.p03.

Öksüz, E. (2020). Comparison of effects of high and low dose paracetamol treatment and toxicity on brain and liver in rats. Northern Clinics of Istanbul, 7(6), 541-550. doi: 10.14744/nci.2020.54926.

Pham, D. H., Zhang, C., & Yin, C. (2017). Using zebrafish to model liver diseases-where do we stand?. Current Pathobiology Reports, 5(2), 207-221.

Purbomartono, C., Mulia, D. S., & Priyambodo, D. (2019). Respon imun non-spesifik ikan gurami (Osphronemus gouramy) yang diberi fucoidan dari ekstrak rumput laut cokelat Padina sp. Sainteks, 16(1), 9-17. doi: 10.30595/sainteks.v16i1.7012.

Putri, F. I. M. (2018). Pengaruh pemberian ekstrak alga coklat (Sargassum sp.) terhadap kadar tnf-α pada hepar tikus wistar dengan diet aterogenik (Disertasi doktoral, Universitas Brawijaya, Malang, Jawa Timur, Indonesia). Diakses dari http://repository.ub.ac.id/id/eprint/167642/.

Rafita, I. D., Lisdiana., & Marianti, L. (2015). Pengaruh ekstrak kayu manis terhadap gambaran histopatologi dan kadar SGOT-SGPT hepar tikus yang diinduksi parasetamol. Unnes Journal of Life Science, 4(1), 29-37.

Raharjeng, A. R. P., Kusumaningtyas, A. A., Widatama, D. A., Zarah, S., Pratama, F., & Dani, H. B. (2021). The effects of the plant extract on embryonic development of zebrafish (Danio rerio). Tropical Genetics, 1(1), 6-11.

Reed, B., & Jennings, M. (2011). Guidance on the housing and care of zebrafish Danio rerio. In Royal Society for the Prevention of Cruelty to Animals (RSPCA), Research animals department, science group, RSPCA. Diakses dari https://www.aaalac.org/pub/?id=E9019693-90EC-FC4A-526E-E8236CC13B28

Rotundo, L., & Pyrsopoulos, N. (2020). Liver injury induced by paracetamol and challenges associated with intentional and unintentional use. World Journal of Hepatology, 12(4), 125-136. doi: 10.4254/wjh.v12.i4.125.

Santhoskumar, R., Santhosh, R., Shibu, B., Hareesh, K. H., & Gayathri, S. S. (2014). A novel cold boat (cold plate) method to overcome the irregular solidification of paraffin wax during the time of preparation of block for microtomy. Journal of Cytology & Histology, S4(002). doi: 10.4172/2157-7099S4-002.

Sinurat, E., & Maulida, N. N. (2018). Effect of fucoidan hydrolysis on its activity as an antioxidant. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 13(2), 123-130. doi: 10.15578/jpbkp.v13i2.522.

Traifalgar, R. F., Kira, H., Tung, H, T., Michael, F. R., Laining, A., Yokoyama, S., … Koshio, S. (2010). Influence of dietary fucoidan supplementation on growth and immunological response of juvenile Marsupenaeus japonicus. Journal of the World Aquaculture Society, 41(S2), 235-244.

Trede, N. S., Zapata, A., & Zon, L. I. (2001). Fishing for lymphoid genes. Trends in Immunology, 22(6), 302-307. doi: 10.1016/S1471-4906(01)01939-1.

Vieira, R. P., & Mourão, P. A. (1988). Occurrence of a unique fucose-branched chondroitin sulfate in the body wall of a sea cucumber. The Journal of Biological Chemistry, 263(34), 18176-18183. doi: 10.1016/s0021-9258(19)81341-8.

Wardi, E. S., Fendri, S. T. J., & Tanjung, L. (2019). Biosorpsi senyawa parasetamol yang berpotensi dalam penanganan limbah obat. Jurnal Katalisator, 4(1), 53-60. doi: 10.22216/jk.v4i1.3884.

Xue, M., Liang, H., Zhou, Z., Liu, Y., He, X., Zhang, Z., … Qin, K. (2021). Effect of fucoidan on ethanol-induced liver injury and steatosis in mice and the underlying mechanism. Food and Nutrition Research, 65(3), 1-14. doi: 10.29219/fnr.v65.5384.

Yuniarto, A., Sukandar, E. Y., Fidrianny, I., & Adnyana, I. K. (2017). Aplikasi zebrafish (Danio rerio) pada beberapa model penyakit eksperimental. MPI (Media Pharmaceutica Indonesiana), 1(3), 116-126.

Zhang, Y., Xia, Q., Wang, J., Zhuang, K., Jin, H., & Liu, K. (2022a). Progress in using zebrafish as a toxicological model for traditional Chinese medicine. Journal of Ethnopharmacology, 282, 114638.

Zhang, N., Xue, M., Sun, T., Yang, J., Pei, Z., & Qin, K. (2022b). Fucoidan as an autophagy regulator: Mechanisms and therapeutic potentials for cancer and other diseases. Nutrition and Cancer, 74(5), 1568-1579. doi: 10.1080/01635581.2021.1973045.




DOI: https://doi.org/10.15408/kauniyah.v17i2.27185 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120