Produksi Antibodi Poliklonal Menggunakan Protein Rekombinan RBD-spike Untuk Deteksi SARS-CoV-2
Abstract
Abstrak
SARS-CoV-2 merupakan virus yang menyebabkan Coronavirus Disease 2019 (COVID-19) di seluruh dunia dan sampai saat ini kasus terbaru masih terus dilaporkan. Diagnostic test merupakan hal yang krusial untuk dikembangkan. Prinsip diagnostic test COVID-19 berbasis antigen, yaitu mendeteksi virus SARS-CoV-2 melalui respon antibodi dari penderita. Penelitian ini bertujuan untuk memproduksi antibodi poliklonal menggunakan protein rekombinan RBD-Spike untuk mendeteksi virus SARS-CoV-2 berbasis antibodi. Penelitian dimulai dengan penentuan domain RBD-Spike menggunakan pensejajaran asam amino, dan konstruksi DNA untuk RBD-Spike pada vektor ekspresi pET28a menggunakan sintetik nukleotida. Produksi protein rekombinan RBD-Spike diekspresikan pada sel bakteri Escherichia coli. Purifikasi dilakukan untuk memperoleh protein RBD-Spike dan selanjutnya digunakan sebagai antigen untuk induksi antibodi poliklonal pada kelinci. Hasil penelitian menunjukkan bahwa ekspresi protein rekombinan RBD-Spike SARS-CoV-2 memerlukan induksi IPTG 0,1 mM dan terekspresi dalam bentuk inclusion bodies dengan ukuran 39 kDa. Purifikasi protein RBD-Spike dilakukan menggunaan resin afinitas NiNTA, elektroelusi, dan dialisis. Total protein RBD-Spike yang diperoleh sebanyak 4 mL dengan konsentrasi 10 mg/mL. Analisa Ouchterlony menunjukkan bahwa antibodi poliklonal terdeteksi pada minggu kedua setelah injeksi booster dan analisa spesifitas antibodi terhadap antigen menunjukkan bahwa antibodi poliklonal dapat mendeteksi protein RBD-Spike pada konsentrasi 0,1 µg. Selanjutnya diharapkan antibodi poliklonal dapat digunakan untuk deteksi keberadaan virus SARS-CoV-2 dan dapat dikembangkan untuk kit deteksi berbasis antibodi.
Abstract
SARS-CoV-2 is the virus that causes Coronavirus Disease 2019 (COVID-19) worldwide and the latest cases are still being reported until now. The diagnostic test is a crucial to be developed. The principle of the antigen-based COVID-19 diagnostic test is to detect the SARS-CoV-2 virus through antibody response from the patients. This study was conducted to produce polyclonal antibodies using recombinant protein RBD-Spike. The research was carried out by determining the RBD-Spike domain using amino acid alignment and constructing the DNA of RBD-Spike to the expression vector of pET28a using nucleotide synthesis. Production of RBD-Spike recombinant protein was expressed in Escherichia coli. Purification was carried out to obtain RBD-Spike protein and used to induce polyclonal antibody ina rabbit. The results showed that the expression of RBD-Spike recombinant protein required induction of IPTG 0.1 mM and was expressed in inclusion bodies with molecular size of 39 kDa. The purification of RBD-Spike protein was carried out using resin affinity, electroelution, and dialysis. The total protein of RBD-Spike obtained was 4 mL with a concentration of 10 mg/mL. Ouchterlony analysis revealed that polyclonal antibody was detected in the second week after booster injection and analysis of antibody specificity showed that polyclonal antibodies detected RBD-Spike protein at the concentration of 0.1µg of RBD-Spike protein. Moreover, it is expected that our polyclonal antibody detect the SARS-CoV-2 virus and can be developed for antibody-based detection kits.
Keywords
Full Text:
PDFReferences
Apriasti, R., Widyaningrum, S., Hidayati, W.N., Sawitri, W.D., Darsono, N., Hase, T., & Sugiharto, B. (2018). Full sequence of the coat protein gene is required for the induction of pathogen-derived resistance against sugarcane mosaic virus in transgenic sugarcane. Molecular Biology Reports, 45(6), 2749-2758. doi: 10.1007/s11033-018-4326-1.
Brindha, S., & Kuroda, Y. (2022). A multi-disulfide receptor-binding domain (RBD) of the SARS-CoV-2 spike protein expressed in E. coli using a SEP-Tag produces antisera interacting with the mammalian cell expressed spike (S1) protein. International journal of molecular sciences, 23(3), 1703. doi: 10.3390/ijms23031703.
Conzentino, M. S., Paul, N. M., Rego, F. G. M., Dalila, L., Aoki, M. N., Nardin, J. M., & Huergo, L. F. (2021). A magnetic bead immunoassay to detect human IgG reactive to SARS-CoV-2 spike S1 RBD produced in Escherichia coli. Brazilian Journal of Microbiology, 1-12. doi: 10.1101/2021.12.22.2126828.
Cleemput, J. V., Snippenberg, W. V., Lambrechts, L., Dendooven, A., D’Onofrio, V., Couck, L., … Vandekerckhove, L. (2021). Organ-specific genome diversity of replication-competent SARS-CoV-2. Nature communications, 12(6612), 1-11. doi: 10.1038/s41467-021-26884-7.
Darsono, N., Azizah, N. N., Putranty, K. M., Astuti, N. T., Addy, H. S., Darmanto, W., & Sugiharto, B. (2018). Production of a polyclonal antibody against the recombinant coat protein of the sugarcane mosaic virus and its application in the immunodiagnostic of sugarcane. Agronomy, 8(6), 1-13. doi: 10.3390/agronomy8060093.
Dearlove, B., Lewitus, E., Bai, H., Li, Y., Reeves, D. B., Joyce, M. G., … Rolland, M. (2020). A SARS-CoV-2 vaccine candicate would likely match all currently circulating variants. Proceedings of the National Academy of Sciences of the United States of America, 117(38), 23652-23662. doi: 10.1073/pnas.2008281117.
Dong. Y., Dai, T., Wang, B., Zhang, L., Zeng, L., Yan, H., … Zhou, F. (2021). The way of SARS-CoV-2 vaccine development: Success and challenges. Signal Transduction and Targeted Therapy, 6(387), 1-14. doi: 10.1038/s41392-021-00796-w.
Duan, L., Zheng, Q., Zhang, H., Niu, Y., Lou, Y., & Wang, H. (2020). The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: Implications for the design of spike-based vaccine immunogens. Frontiers in Immunology, 11(576622), 1-12. doi: 10.3389/fimmu.2020.576622.
Duong, N. D., Nguyen-Phuoc, K. H., Do, K. Y. T., Nguyen, N. T. T., Tran, T. L., & Tran-Van, H. (2021). Production of polyclonal antibody against the recombinant PirBvp protein of Vibrio parahaemolyticus. Journal of Genetic Engineering and Biotechnology, 19(70), 1-8. doi: 10.1186/s43141-021-00172-9.
Fazaeli, A., Golestani, A., Lakzaei, M., Rasi, V.S.S., & Aminian, M. (2019) Expression optimization, purification, and functional characterization of cholesterol oxidase from Chromobacterium sp. DS1. PLOS ONE, 14(2), 1-15. doi: 10.1371/journal.pone.0212217.
Freeman, B., Lester, S., Mills, L., Rasheed, M., Moye, S., Abiona, O., … Thornburg, N. J. (2020). Validation of a SARS-CoV-2 spike protein ELISA for use in contact investigations and serosurveillance. Biorxiv: The Preprint Server for Biology, 04.24.057323. doi: 10.1101/2020.04.24.057323.
Frew, E., Roberts, D., Barry, S., Holden, M., Mand, A. R., Mitsock, E., … Skog. (2021). A SARS-CoV-2 antigen rapid diagnostic test for resource limited settings. Scientific reports, 11(23009), 1-10. doi: 10.1038/s41598-021-02128-y.
George, S., Pal, A. C., Gagnon, J., Timalsina, S., Singh, P., Vydyam, P., … the Yale Impact Team. (2021). Evidence for SARS-CoV-2 spike protein in the urine of COVID-19 patients. Kidney, 360, 2(6), 924-936. doi: 10.34067/KID.0002172021.
Hornbeck, P. (2017). Double-immunodiffusion assay for detecting specific antibodies (ouchterlony). Current Protocols in Immunology, 116, 2.3.1-2.3.4. doi: 10.1002/cpim.18.
Jiang, M., Zhang, G., Liu, H., Ding, P., Liu, Y., Tian, Y., … Wang, A. (2021). Epitope profiling reveals the critical antigenic determinants in SARS-CoV-2 RBD-based antigen. Frontiers in Immunology, 12, 707977, 1-14.
Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., … Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215-220. doi: 10.1038/s41586-020-2180-5.
Lau, S. K., Woo, P. C., Wong, B. H., Tsoi, H. W., Woo, G. K., Poon, R. W., … Yuen, K. Y. (2004). Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in sars patients by enzyme-linked immunosorbent assay. Journal of Clinical Microbiology, 42(7), 2884-2889. doi: 10.1128/JCM.42.7.2884-2889.2004.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265-275.
Mardanova, E. S., Blokhina, E. A., Tsybalova, L. M., Peyret, H., Lomonossoff, G. P., & Ravin, N. V. (2017). Efficient transient expression of recombinant proteins in plants by the novel pEff vector based on the genome of potato virus x. Frontier in Plant Science, 8(247), 1-8. doi: 10.3389/fpls.2017.0024.
Mehalko, J., Drew, M., Snead, K., Denson, J. P., Wall, V., Taylor, T., … Esposito, D. (2021). Improved production of SARS-CoV-2 spike receptor-binding domain (RBD) for serology assays. Protein Expression and Purification, 179(105802), 1-7. doi: 10.1016/j.pep.2020.105802.
Prahlad, J., Struble, L. R., Lutz, W. E., Wallin, S. A., Khurana, S., Schnaubelt, A., … Borgstah, G. (2021). CyDisCo production of functional recombinant SARS-CoV-2 spike receptor binding domain. Protein Science: A publication of the Protein Society, 30(9), 1983-1990. doi: 10.1002/pro.4152.
Sawitri, W. D., Narita, H., Ishizaka-Ikeda, E., Sugiharto, B., Hase, T., & Nakagawa, A. (2016). Purification and characterization of recombinant sugarcane sucrose phosphate synthase expressed in E. coli and insect Sf9 cells: An importance of the N-terminal domain for an allosteric regulatory property. Journal of Biochemistry, 159(6), 599-607. doi: 10.1093/jb/mvw004.
Sender, R., Bar-On, Y. M., Gleizer, S., Bernsthein, B., Flamholz, A., Phillips, R., & Milo, R. (2021). The total number and mass of SARS-CoV-2 virions. MedRxiv: The Preprint Server for Health Sciences, 2020.11.16.20232009. doi: 10.1101/2020.11.16.20232009.
Septian, A. F., Neliana, I. R., Kusumawardani, B., & Sugiharto, B. (2021). Pengujian potensi alergenitas coat protein sugarcane mozaic virus pada tanaman tebu transgenik. Jurnal Bioteknologi & Biosains Indonesia, 8, 208-219.
Shilling, P. J., Mirzadeh, K., Cumming, A. J., Widesheim, M., Kock, Z., & Deley, D. O. (2020). Improved designs for pET expression plasmids increase protein production yield in Escherichia coli. Communications Biology, 3(214), 1-8. doi: 10.1038/s42003-020-0939-8.
Sikora, M., von Bülow, S., Blanc, F. E. C., Gecht, M., Covino, R., & Hummer, G. (2021) Computational epitope map of SARS-CoV-2 spike protein. PLOS Computational Biology, 17(4), 1-16. doi: 10.1371/journal.pcbi.1008790.
Tan, J. S., Ramanan, R. N., Ling, T. C., Mustafa, S., & Ariff, A. B. (2012). The role of lac operon and lac repressor in the induction using lactose for the expression of periplasmic human interferon-α2b by Escherichia coli. Annals of Microbiology, 62, 1427-1435. doi: 10.1007/s13213-011-0394-3.
Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281-292. doi: 10.1016/j.cell.2020.02.058.
Wang, S., Dai, T., Qin, Z., Pan, T., Chu, F., Lou, L., … Zhou, F. (2021). Targeting liquid–liquid phase separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity by elevating MAVS activity. Nature Cell Biology, (23), 718-732. doi: 10.1038/s41556-021-00710-0.
Zhang, Z., Kuipers, G., Niemiec, Ł., Baumgarten, T., Slotboom, D. J., de Gier, J. W., & Hjelm, A. (2015). High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG. Microbial Cell Factories, 14(142), 1-11. doi: 10.1186/s12934-015-0328-z
DOI: https://doi.org/10.15408/kauniyah.v16i2.25664 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
This work is licensed under a CC-BY- SA.
Indexed By:
  Â