Potensi Isolat Bakteri Selulolitik Toleran Panas Asal Tanah, Sampah Dapur, dan Kotoran Sapi Dalam Biodegradasi Serasah Daun
Abstract
Abstrak
Bakteri selulolitik memainkan peranan penting dalam biodegradasi komponen selulosa pada sampah organik. Namun, proses pengomposan umumnya melewati fase termofilik (suhu mencapai 55 °C), sehingga tidak semua bakteri dapat bertahan. Sebanyak delapan isolat bakteri selulolitik telah berhasil diisolasi dari tanah, sampah dapur, dan kotoran sapi. Namun, isolat-isolat tersebut belum diketahui aktivitas selulolitiknya pada suhu tinggi dan kemampuannya dalam mendegradasi biomassa serasah daun. Tujuan penelitian ini adalah mengetahui aktivitas selulolitik isolat bakteri pada suhu tinggi secara kualitatif, mengetahui aktivitas selulolitik isolat bakteri secara kuantitatif, dan mengetahui kemampuan isolat bakteri selulolitik dalam mendegradasi biomassa serasah daun. Penelitian dilakukan dengan tahapan peremajaan isolat, skrining kualitatif aktivitas selulolitik isolat pada suhu ruangan, 45 °C dan 55 °C, skrining kuantitatif aktivitas selulolitik isolat, dan uji degradasi biomassa serasah daun. Sebanyak 6 dari 8 isolat bakteri menunjukkan aktivitas selulolitik pada medium Carboxy Methyl Celullose (CMC) Agar pada suhu 55 °C. Berdasarkan uji aktivitas enzim secara kuantitatif, 3 isolat (KS1, KS4, dan SD5) dengan aktivitas enzim tertinggi terpilih untuk pengujian degradasi serasah daun dan menunjukkan rata-rata aktivitas enzim secara berurutan 0,0074 UI/mL; 0,0080 UI/mL; 0,0159 UI/mL. Ketiga isolat mampu mempercepat proses degradasi serasah daun dan berpotensi sebagai agen pengomposan.
Abstract
However, the composting process generally passes through a thermophilic phase (55 °C), so that not all bacteria can survive. A total of 8 isolates of cellulolytic bacteria isolated from soil, kitchen waste, and cow dung have not yet known their cellulolytic activity at high temperatures and their ability to degrade leaf litter biomass. This study aimed to determine the cellulolytic activity of bacterial isolates at high temperatures qualitatively, to determine the cellulolytic activity of bacterial isolates quantitatively, and to determine the ability of these isolates to degrade leaf litter biomass. The research was carried out by reculture isolates; qualitative screening of isolate cellulolytic activity at room temperature, 45 °C and 55 °C; quantitative screening of isolate cellulolytic activity; and leaf litter biomass degradation test. Six of eight bacterial isolates showed cellulolytic activity on Carboxy Methyl Celullose (CMC) Agar medium at 55 °C. Three isolates (KS1, KS4, and SD5) with the highest enzyme activity were selected for the leaf litter degradation test and showed an average enzyme activity of 0.0074 UI/mL; 0.0080 UI/mL; 0.0159 UI/mL, respectively. The three isolates were able to accelerate the degradation process of leaf litter and have potential as composting agents.
Keywords
Full Text:
PDFReferences
Abdel-rahman, M. A. (2016). Establishment of efficient cellulolytic bacterial consortium potential for designed composting of rice straw. International Journal of Advanced Research in Biological Sciences, 3(4), 211-228.
Akhtar, N., Sharma, A., Deka, D., Jawed, M., Goyal, D., & Goyal, A. (2013). Characterization of cellulase producing Bacillus sp. for effective degradation of leaf litter biomass. Environmental Progress and Sustainable Energy, 32(4), 1195-1201. doi: 10.1002/ep.11726.
Akhtar, N., Goyal, D., & Goyal, A. (2015). Biodegradation of leaf litter biomass by combination of Bacillus sp. and Trichoderma reesei MTCC164. Minerva Biotecnologica, 27(4), 191-199.
Archna, S., Priyank, V., Nath, Y. A., & Kumar, S. A. (2015). Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Research Journal of Biotechnology, 10(4), 33-42.
Chen, K. S., Lin, Y. S., & Yang, S. S. (2007). Application of thermotolerant microorganisms for biofertilizer preparation. Journal of Microbiology, Immunology and Infection, 40(6), 462-473.
Islam, F., & Roy, N. (2019). Isolation and characterization of cellulase-producing bacteria from sugar industry waste. American Journal of BioScience, 7(1), 16-22. doi: 10.11648/j.ajbio.20190701.13.
Jabir, D. M., & Jabir, M. M. (2016). A study of biodegradation of paper wastes by using bacteria isolated from the soil. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 18(3), 777-780. doi: 10.13140/RG.2.2.33601.97124.
Jackson, M. L. (1967). Soil chemical analysis. New Delhi: Parallel Press.
Khelil, O., & Cheba, B. (2014). Thermophilic cellulolytic microorganisms from Western Algerian sources: Promising isolates for cellulosic biomass recycling. Procedia Technology, 12, 519-528. doi: 10.1016/j.protcy.2013.12.524.
Krishna, M. P., & Mohan, M. (2017). Litter decomposition in forest ecosystems: A review. Energy, Ecology and Environment, 2(4), 236-249. doi: 10.1007/s40974-017-0064-9.
Kumar, A. K. (2015). UV mutagenesis treatment for improved production of endoglucanase and β-glucosidase from newly isolated thermotolerant Actinomycetes, Streptomyces griseoaurantiacus. Bioresources and Bioprocessing, 2(1), 1-10. doi: 10.1186/s40643-015-0052-x.
Maki, M. L., Idrees, A., Leung, K. T., & Qin, W. (2012). Newly isolated and characterized bacteria with great application potential for decomposition of lignocellulosic biomass. Journal of Molecular Microbiology and Biotechnology, 22(3), 156-166. doi: 10.1159/000341107.
Mazzucotelli, C. A., Ponce, A. G., Kotlar, C. E., & Moreira, M. del R. (2013). Isolation and characterization of bacterial strains with a hydrolytic profile with potential use in bioconversion of agroindustial by-products and waste. Food Science and Technology, 33(2), 295-303. doi: 10.1590/S0101-20612013005000038.
Miller, L. G. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428.
Petrillo, M., Cherubini, P., Sartori, G., Abiven, S., Ascher, J., Bertoldi, D., … Egli, M. (2016). Decomposition of norway spruce and european larch coarse woody debris (CWD) in relation to different elevation and exposure in an alpine setting. IForest, 9(1), 154-164. doi: 10.3832/ifor1591-008.
Purahong, W., Wubet, T., Lentendu, G., Schloter, M., Pecyna, M. J., Kapturska, D., … Buscot, F. (2016). Life in leaf litter: Novel insights into community dynamics of bacteria and fungi during litter decomposition. Molecular Ecology, 25(16), 4059-4074. doi: 10.1111/mec.13739.
Rashid, G. M. M., Durán-Peña, M. J., Rahmanpour, R., Sapsford, D., & Bugg, T. D. H. (2017). Delignification and enhanced gas release from soil containing lignocellulose by treatment with bacterial lignin degraders. Journal of Applied Microbiology, 123(1), 159-171. doi: 10.1111/jam.13470.
Rojas-Jiménez, K., & Hernández, M. (2015). Isolation of fungi and bacteria associated with the guts of tropical wood-feeding Coleoptera and determination of their lignocellulolytic activities. International Journal of Microbiology, 2015, 1-11. doi: 10.1155/2015/285018.
Rytioja, J., Hildén, K., Yuzon, J., Hatakka, A., de Vries, R. P., & Mäkelä, M. R. (2014). Plant-polysaccharide-degrading enzymes from Basidiomycetes. Microbiology and Molecular Biology Reviews, 78(4), 614-649. doi: 10.1128/mmbr.00035-14.
Satwika, T. D., Yulianti, D. M., & Hikam, A. R. (2021). Karakteristik dan potensi enzimatis bakteri asal tanah sampah dapur dan kotoran ternak sebagai kandidat agen biodegradasi sampah organik. Al-Hayat: Journal of Biology and Applied Biology, 4(1), 11-18. doi: 10.21580/ah.v4i1.7013.
Schneider, T., Keiblinger, K. M., Schmid, E., Sterflinger-Gleixner, K., Ellersdorfer, G., Roschitzki, B., … Riedel, K. (2012). Who is who in litter decomposition Metaproteomics reveals major microbial players and their biogeochemical functions. ISME Journal: Multidisciplinary Journal of Microbial Ecology, 6(9), 1749-1762. doi: 10.1038/ismej.2012.11.
Strukelj, M., Brais, S., Quideau, S. A., Angers, V. A., Kebli, H., Drapeau, P., & Oh, S. W. (2013). Chemical transformations in downed logs and snags of mixed boreal species during decomposition. Canadian Journal of Forest Research, 43(9), 785-798. doi: 10.1139/cjfr-2013-0086.
Tláskal, V., Voříšková, J., & Baldrian, P. (2016). Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia. FEMS Microbiology Ecology, 92(11), 1-10. doi: 10.1093/femsec/fiw177.
Walkley, A., & Black, C. A. (1932). Estimation of organic carbon by the chromic acid titration method. Soil Science, 37, 29-38.
Wibisono, S. H., Nugroho, W. A., Kurniati, E., & Prasetyo, J. (2016). Pengomposan sampah organik pasar dengan pengontrolan suhu tetap dan suhu sesuai fase pengomposan. Keteknikam Pertanian Tropis dan Biosistem, 4(2), 94-102.
Woo, H. L., Hazen, T. C., Simmons, B. A., & DeAngelis, K. M. (2014). Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Systematic and Applied Microbiology, 37(1), 60-67. doi: 10.1016/j.syapm.2013.10.001.
Xiong, X. Q., Liao, H. D., Ma, J. S., Liu, X. M., Zhang, L. Y., Shi, X. W., … Zhu, Y. H. (2014). Isolation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability. Letters in Applied Microbiology, 58(2), 123-129. doi: 10.1111/lam.12163.
Zhao, Y., Zhao, Y., Zhang, Z., Wei, Y., Wang, H., Lu, Q., … Wei, Z. (2017). Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting. Waste Management, 68, 64-73. doi: 10.1016/j.wasman.2017.06.022.
DOI: https://doi.org/10.15408/kauniyah.v16i2.25616 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
This work is licensed under a CC-BY- SA.
Indexed By:
  Â