Tinjauan Biosorpsi Logam Berat Pb dan Cd Oleh Jamur Makro

Noverita Noverita, Nuniek Ina Ratnaningtyas, Endang Sukara, Nuraeni Ekowati, Sri Lestari

Abstract


Abstrak

Keberadaan logam berat perlu ditanggulangi, salah satunya dengan cara biosorpsi. Biosorpsi merupakan salah satu metode remediasi yang paling tepat digunakan dalam menanggulangi pencemaran logam berat. Proses secara efisien dapat menyerap logam berat terlarut bahkan logam berat yang ada dalam larutan kompleks yang sangat encer. Jamur makro merupakan contoh biosorben yang dapat digunakan dalam biosorpsi. Pemanfaatan jamur makro sebagai biosorben sangat tepat dilakukan karena keanekaragaman jenisnya tinggi, cepat tumbuh dengan kemampuan metabolisme yang beragam pada berbagai senyawa organik dan anorganik, mudah didapatkan, lebih aman karena tidak menyebabkan korosi atau menghasilkan bahan berbahaya, teknologinya sederhana, perawatannya mudah dan produk akhir dapat didaur ulang, serta dapat mengakumulasi logam berat dengan kosentrasi tinggi. Jenis-jenis jamur makro yang sudah digunakan dalam biosorpsi logam berat di beberapa negara antara lain Agaricus bisporus, Auricularia polytricha, Calocybe indica, Ganoderma carnosum, Flammulina velutipes, Fomes fasciatus, dan Volvariella volvacea. Sementara itu, penelitian penggunakan jamur makro di Indonesia dalam biosorpsi logam berat sangat terbatas yakni pada jenis Phanerochaete chrysosporium, Omphalina sp., dan Pholiota sp. Mengingat tingginya keanekaragaman jamur makro di Indonesia, maka potensi biosorpsi logam berat khususnya Pb dan Cd oleh jamur makro sangat berpeluang untuk diteleti lebih lanjut.

Abstract

Heavy metals can accumulate in seawater, sediments and in the marine biota that live in them, eventually entering the food chain which is very dangerous to health. The presence of these heavy metals needs to be overcome, one of which is by means of biosorption. Biosorption is one of the most appropriate remediation methods used in tackling heavy metal pollution. The biosorption process can efficiently absorb dissolved heavy metals and even heavy metals present in very dilute complex solutions. Macro fungi are examples of biosorbents that can be used in biosorption. Utilization of macro fungi as biosorbents is very appropriate because of the high diversity of species, fast growing with diverse metabolic abilities on various organic and inorganic compounds, easy to obtain, strong morphology, safer because they do not cause corrosion or produce harmful materials, simple technology, easy maintenance and the final product can be recycled, can accumulate heavy metals with high concentrations. The types of macro fungi that have been used in the biosorption of heavy metals in several countries include Agaricus bisporus, Auricularia polytricha, Calocybe indica, Ganoderma carnosum, Flammulina velutipes, Fomes fasciatus, and Volvarella volvacea. Meanwhile in Indonesia, research on the use of macro fungi in heavy metal biosorption is very limited to the Phanerochaete chrysosporium, Omphalina sp. and Pholiota sp. Considering the high diversity of macro fungi in Indonesia, the potential for biosorption of heavy metals, especially Pb and Cd by macro fungi, is very likely to be investigated further.


Keywords


Biosorpsi; Jamur makro; Logam Pb dan Cd; Pencemaran; Biosorption; Macro fungi; Pb and Cd metals; Pollution

Full Text:

PDF

References


Abbas, S. H., Ismail, I. M., Mostafa, T. M., & Sulaymon, A. H. (2014). Biosorption of heavy metals: A review. Journal of Chemical Science and Technology, 3, 74-102.

Abdi, O., & Kazemi, M. J. J. M. E. S. (2015). A review study of biosorption of heavy metals and comparison between different biosorbents. Journal Material Environment Science, 6, 1386-1399.

Agrahar-Murugkar, D., & Subbulakshmi, G. (2005). Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chemistry, 89, 599-603.

Ahalya, N., Ramachandra, T., & Kanamadi, R. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7, 71-79.

Ahemad, M., Kibret, M. J. B., & Biology, M. (2013). Recent trends in microbial biosorption of heavy metals: A review. Biochemistry and Molecular Biology, 1, 19-26.

Ahmad, R. Z. J. W. (2018). Mikoremediasi menghilangkan polusi logam berat pada lahan bekas tambang untuk lahan peternakan. Wartazoa, 28, 41-50.

Akar, T., Cabuk, A., Tunali, S., & Yamac, M. (2006). Biosorption potential of the macrofungus Ganoderma carnosum for removal of lead (ii) ions from aqueous solutions. Journal of Environmental Science and Health part A, 41, 2587-2606.

Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of chemistry, 2019, 1-14.

Ali, H., & Khan, E. (2018). What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’–proposal of a comprehensive definition. Toxicological & Environmental Chemistry, 100, 6-19.

Anahid, S., Yaghmaei, S., & Ghobadinejad, Z. (2011). Heavy metal tolerance of fungi. Scientia Iranica, 18, 502-508.

Atakan, A., Özkaya, H. Ö., & Erdoğan, O. (2018). Effects of arbuscular mycorrhizal fungi (amf) on heavy metal and salt stress. Turkish Journal of Agriculture-Food Science and Technology, 6, 1569-1574.

Arbanah, M., Najwa, M. M., & Halim, K.K. (2012). Biosorption of cr (iii), fe (ii), cu (ii), zn (ii) ions from liquid laboratory chemical waste by Pleurotus ostreatus. International Journal of Biotechnology for Wellness Industries, 1,152-162.

Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International journal of environmental research and public health, 14, 1-16.

Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials, 97, 219-243.

Barh, A., Kumari, B., Sharma, S., Annepu, S. K., Kumar, A., Kamal, S., & Sharma, V. P. (2019). Mushroom mycoremediation: Kinetics and mechanism-Smart Bioremediation Technologies. India: Academic Press.

Barokah, G. R., Dwiyitno, D., & Nugroho, I. (2019). Kontaminasi logam berat (hg, pb, dan cd) dan batas aman konsumsi kerang hijau (Perna virdis) dari perairan Teluk Jakarta di musim penghujan. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 14, 95-106.

Bharath, Y., Singh, S., Keerthiga, G., & Prabhakar, R. (2019). Mycoremediation of contaminated soil in MSW sites-Waste Management and Resource Efficiency. Singapore: Springer.

Blakley, B. R. (2011). Arsenic poisoning, mercury poisoning. Merck Manual. Retrieved from https://www.merckmanuals.com/PetHealth/Special-Subjects/Poisoning/ArsenicPoisoning/Mercury-Poisoning

Bosco, F., & Mollea, C. (2019). Mycoremediation in soil. Biodegradation Processes. Intech Open. doi: 10.5772/intechopen.84777.

Bayramoğlu, G., Bektaş, S., & Arıca, M. Y. (2003). Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. Journal of Hazardous Materials, 101, 285- 300.

Çeribasi, I. H., & Yetis, U. (2001). Biosorption of ni (ii) and pb (ii) by Phanerochaete chrysosporium from a binary metal system–kinetics. WaterSA, 27, 15-20.

Chatterjee, S., Sarma, M. K., Deb, U., Steinhauser, G., Walther, C., & Gupta, D. K. (2017). Mushrooms: From nutrition to mycoremediation. Environmental Science and Pollution Research, 24, 19480-19493.

Chaturvedi, A. D., Pal, D., Penta, S., & Kumar, A. (2015). Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem. World Journal of Microbiology and Biotechnology, 31, 1595-1603.

Chen, G., Zeng, G., Tang, L., Du, C., Jiang, X., Huang, G., … Shen, G. (2008). Cadmium removal from simulated wastewater to biomass by product of Lentinus edodes. Bioresource Technology, 99, 7034-7040.

Chun, S. C., Muthu, M., Hasan, N., Tasneem, S., & Gopal, J. J. A. S. (2019). Mycoremediation of pcbs by Pleurotus ostreatus: Possibilities and prospects. Applied Sciences, 9, 4185.

Das, N. (2005). Heavy metals biosorption by mushrooms. NISCAIR online periodicals repository, 4, 454-459.

Demirbaş, A. (2001). Heavy metal bioaccumulation by mushrooms from artificially fortified soils. Food chemistry, 74, 293-301.

Deshmukh, R., Khardenavis, A. A., & Purohit, H. J. (2016). Diverse metabolic capacities of fungi for bioremediation. Indian Journal of Microbiology, 56, 247-264.

Dhankhar, R., & Hooda, A. (2011). Fungal biosorption–an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32, 467-491.

Dimawarnita, F., Suharyanto., Tri-Panji., Richana, N., & Zainudin, A. (2016). Biosorpsi ion tembaga dalam limbah tailing menggunakan jamur pelapuk putih (Omphalina sp. dan Pholiota sp.). Menara Perkebunan, 83(1). doi: 10.22302/iribb.jur.mp.v83i1.11.

Dimawarnita, F., Panji, T., & Mulyoprawiro, S.J. (2017). Biosorpsi ion merkuri menggunakan jamur pelapuk putih imobil (Biosorption of mercury ion using immobile white- rot fungi). E-Journal Menara Perkebunan, 85, 28-36.

Dixit, R., Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., Shukla, R., … Lade, H. J. S. (2015). Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability, 7, 2189-2212.

Dutta, S. D., & Hyder, M. D. (2019). Mycoremediation: A potential tool for sustainable management. Mycopathological Research, 57, 25-34.

Endrinaldi, E. (2009). Logam-logam berat pencemar lingkungan dan efek terhadap manusia. Jurnal Kesehatan Masyarakat Andalas, 4, 42-46.

Erriek, A. (2012). Biosorpsi logam cu (ii) dan cr (vi) pada limbah elektroplating dengan menggunakan bimassa Phanerochaete Chrysosporium. Jurnal Teknik Kimia, 4, 250-254.

Fomina, M., & Gadd, G. M. (2014). Biosorption: Current perspectives on concept, definition and application. Bioresource technology, 160, 3-14.

Gadd, G. M. (2009). Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. Bioresource technology, 84, 13-28.

Garcia, M.A., Alonso, J., & Melgar, M. J. (2005). Agaricus macrosporus as a potential bioremediation agent for substrates contaminated with heavy metals. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 80,325-330.

Gavrilescu, M. (2004). Removal of heavy metals from the environment by biosorption. Engineering in Life Sciences, 4, 219-232.

Gelagutashvili, E. (2013). Comparative study on heavy metals biosorption by different types of bacteria. Open Journal of Metal, 3, 62-67.

Goyal, N., Jain, S., & Banerjee, U. C. (2003). Comparative studies on the microbial adsorption of heavy metals. Advances in Environmental Research, 7, 311-319.

Gupta, M., & Shrivastava, S. (2014). Mycoremediation: A management tool for removal of pollutants from environment. Indian Journal of Applied Research, 4, 289-291.

Gusnita, D. J. (2012). Pencemaran logam berat timbal (pb) di udara dan upaya penghapusan bensin bertimbal. Berita Dirgantara, 13, 5-101.

Handayanto, E., Nuraini, Y., Muddarisna, N., Syam, N., & Fiqri, A. (2017). Fitoremediasi dan phytomining logam berat pencemar tanah. Malang: Universitas Brawijaya Press.

Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., Cannon, P. F., Eriksson, O. E., … Lumbsch, H. T. (2007). A higher-level phylogenetic classification of the fungi. Mycological research, 111(5), 509-547.

Hidayat, B. (2015). Remediasi tanah tercemar logam berat dengan menggunakan Biochar. Jurnal Pertanian Tropik, 2, 31-41.

Huang, H., Cao, L., Wan, Y., Zhang, R., & Wang, W. (2012). Biosorption behavior and mechanism of heavy metals by the fruiting body of jelly fungus (Auricularia polytricha) from aqueous solutions. Applied Microbiology and Biotechnology, 96, 829-840.

Isildak, Ö., Turkekul, I., Elmastas, M., & Tuzen, M. (2004). Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chemistry, 86, 547-552.

Iqbal, M., & Edyvean, R. G. J. (2004). Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium. Minerals Engineering, 17, 217-223.

Igwe, J., & Abia, A. (2006). A bioseparation process for removing heavy metals from waste water using biosorbents. African Journal of Biotechnology, 5, 1167-1179.

Istarani, F., & Pandebesie, E. S. (2014). Studi dampak arsen (as) dan kadmium (cd) terhadap penurunan kualitas lingkungan. Jurnal Teknik Pomits, 3, 53-58.

Joshi, N. C. (2018). Biosorption: Agreen approach for heavy metals removal from water and waste waters. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences (RJLBPCS), 4, 1-59.

Jusuf, R., Sastiono, A., & Widowati, W. (2008). Efek toksik logam pencegahan dan penanggulangan pencemaran. Yogyakarta: Penerbit Andi.

Kocaoba, S., & Arısoy, M. (2018). Biosorption of cadmium (ii) and lead (ii) from aqueous solutions using pleurotus ostreatus immobilized on bentonite. Separation Science and Technology, 53, 1703-1710.

Kanamarlapudi, S., Chintalpudi, V. K., & Muddada, S. (2018). Application of biosorption for removal of heavy metals from wastewater. Biosorption, 18, 69-116.

Kapahi, M., & Sachdeva, S. (2019). Bioremediation options for heavy metal pollution. Journal of Health and Pollution, 9, 1-20.

Khan, I., Aftab, M., Shakir, S., Ali, M., Qayyum, S., Rehman, M. U., … Touseef, (2019). Mycoremediation of heavy metal (cd and cr)–polluted soil through indigenous metallotolerant fungal isolates. Environmental Monitoring and Assessment, 191, 1-11.

Kryczyk, A., Piotrowska, J., Sito, M., Sulkowska-Ziaja, K., Dobosz, K., Opoka, W., & Muszyńska, B. (2017). Remediation capacity of cd and pb ions by mycelia of Imleria badia, Laetiporus sulphureus, and Agaricus bisporus in vitro cultures. Journal of Environmental Science and Health, Part B, 52, 617-622.

Kulshreshtha, S., Mathur, N., & Bhatnagar, P. (2014). Mushroom as a product and their role in mycoremediation. AMB Express, 4, 1-7.

Kurniasari, L. (2010). Pemanfaatan mikroorganisme dan limbah pertanian sebagai bahan baku biosorben logam berat. Majalah Ilmiah Momentum, 6, 5-8.

Kurniawan, A., & Ekowati, N. (2016). Potensi mikoremediasi logam berat. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 3, 36-45.

Kusuma, A. H., Prartono, T., Atmadipoera, A. S., & Arifin, T. (2016). Sebaran logam berat terlarut dan terendapkan di perairan teluk Jakarta. Jurnal Teknologi Perikanan dan Kelautan, 6, 41-49.

Lestari, E. (2004). Dampak pencemaran logam berat terhadap kualitas air laut dan sumber daya perikanan (Studi kasus kematian massal ikan-ikan di Teluk Jakarta). Makara Sains, 8, 52-58.

Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., & Han, W. (2019). A review on heavy metals contamination in soil: Effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal, 28, 380-394.

Luo, D., Xie, Y. F., Tan, Z. L., & Li, X. D., (2013). Removal of cu [sup] 2+[/sup] ions from aqueous solution by the abandoned mushroom compost of Flammulina velutipes. Journal of Environmental Biology, 34, 359-365.

Mandal, P. (2017). An insight of environmental contamination of arsenic on animal health. Emerging Contaminants, 3, 17-22.

Martins, B. L., Cruz, C. C., Luna, A. S., & Henriques, C. A. (2006). Sorption and desorption of pb2+ ions by dead Sargassum sp. biomass. Biochemical Engineering Journal, 27, 310-314.

Muraleedharan, T. R., & Venkobachar, C. (1990). Mechanism of biosorption of copper (ii) by Ganoderma lucidum. Biotechnology and bioengineering, 35, 320-325.

Nagy, B., Măicăneanu, A., Indolean, C., Mânzatu, C., Silaghi-Dumitrescu, L., & Majdik, C., (2014). Comparative study of cd (ii) biosorption on cultivated Agaricus bisporus and wild Lactarius piperatus based biocomposites. Linear and nonlinear equilibrium modelling and kinetics. Journal of the Taiwan Institute of Chemical Engineers, 45, 921-929.

Neeti, K., & Prakash, T. (2013). Effects of heavy metal poisoning during pregnancy. International Research Journal of Environmental Sciences, 2, 88-92.

Nilandita, W. (2015). Studi literatur teknologi fitoremediasi untuk pemulihan ekosistem laut terkontaminasi logam berat. Journal Teknik Lingkungan, 1, 47-51.

Noverita, N., Sinaga, E., & Setia, T. M. (2017). Jamur makro berpotensi pangan dan obat di Kawasan Cagar Alam Lembah Anai dan Cagar Alam Batang Palupuh Sumatera. Jurnal Mikologi Indonesia, 1, 15-27.

Noverita, N., Armanda, D. P., Matondang, I., Setia, T. M., & Wati, R. (2019). Keanekaragaman dan potensi jamur makro di Kawasan Suaka Margasatwa Bukit Rimbang Bukit Baling (SMBRBB) Propinsi Riau, Sumatera. Pro-Life, 6, 26-43.

Nugraha, W. A. (2009). Kandungan logam berat pada air dan sedimen di perairan socah dan kwanyar Kabupaten Bangkalan. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 2, 158-164.

Nurulhusna, I. U. (2014). Biosorpsi logam berat kadmium (cd) pada limbah cair industri tekstil dengan menggunakan jamur Phanerochaete chrysosporium (Disertasi doktoral). UIN Sunan Gunung Djati Bandung, Bandung, Indonesia.

Oladipo, O. G., Awotoye, O. O., Olayinka, A., Bezuidenhout, C. C., & Maboeta, M. S. (2018). Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Brazilian Journal of Microbiology, 49, 29-37.

Oyedepo, T. A., (2011). biosorption of lead (ii) and copper (ii) metal ions on Calotropis procera (Ait.). Science Journal of Purel and Applied Chemistry, 12,1-7.

Oyetayo, V.O., Adebayo, A.O., & Ibileye, A. (2012). Assessment of the biosorption potential of heavy metals by Pleurotus tuber-regium. International Journal of Advanced and Biological and Biomedical Research, 2, 293-297.

Pandey, C., Prabha, D., & Negi, Y. K. (2018). Mycoremediation of common agricultural pesticides. Mycoremediation and Environmental Sustainability, 155-179.

Prakash, V. (2017). Mycoremediation of environmental pollutants. International Journal of ChemTech Research, 10, 149-155.

Purkayastha, R. P., & Mitra, A. K. (1992). Metal uptake by mycelia during submerged growth and by sporocarps of an edible fungus Volvariella volvacea. Indian Journal of Experimental Biology, 30, 1184-1187.

Purnomo, A. S., Mori, T., Putra, S. R., & Kondo, R. (2013). Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus, 82, 40-44.

Purohit, J., Chattopadhyay, A., Biswas, M. K., & Singh, N. K. (2018). Mycoremediation of agricultural soil: Bioprospection for sustainable development-Mycoremediation and environmental sustainability. Springer International Publising.

Puspitasari, D. J., & Khairuddin, K. (2016). Kajian bioremediasi pada tanah tercemar pestisida. KOVALEN: Jurnal Riset Kimia, 2, 8-106.

Qazilbash, A. A. (2004). Isolation and characterization of heavy metal tolerant biota from industrially polluted soils and their role in bioremediation (Disertasi doktoral). Quaid-i- Azam University Islamabad, Pakistan.

Raj, D. D., Mohan, B., & Vidya Shetty, B. M. (2011). Mushrooms in the remediation of heavy metals from soil. International Journal of Environmental Pollution Control and Management, 3, 89-101.

Rao, L. N., & Prabhakar, G. (2011). Removal of heavy metals by biosorption-an overall review. Journal of Engineering Studies and Research, 2, 17-22.

Ratnawati, E., Ermawati, R., & Naimah, S. (2010). Teknologi biosorpsi oleh mikroorganisme, solusi alternatif untuk mengurangi pencemaran logam berat. Jurnal Kimia dan Kemasan 32, 34-40.

Riani, E., Johari, H. S., & Cordova, M. R. (2017). Bioakumulasi logam berat kadmium dan timbal pada kerang kapak-kapak di Kepulauan Seribu. Pengolahan Hasil Perikanan Indonesia, 20, 131-142.

Rochyatun, E., & Rozak, A. (2010). Pemantauan kadar logam berat dalam sedimen di perairan Teluk Jakarta. Pengolahan Hasil Perikanan Indonesia, 20, 131-142.

Said, N. I. (2010). Metoda penghilangan logam berat (as, cd, cr, ag, cu, pb, ni dan zn) di dalam air limbah industri. Jurnal Air Indonesia, 6, 136-148.

Salman, M., Athar, M., & Farooq, U. (2015). Biosorption of heavy metals from aqueous solutions using indigenous and modified lignocellulosic materials. Reviews in Environmental Science and Bio/Technology, 14, 211-228.

Setiawan, A., Basyiruddin, F., & Dermawan,D. (2019). Biosorpsi logam berat cu (ii) menggunakan limbah Saccharomyces cereviseae. Jurnal Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan, 16, 29-35.

Setiyanto, D. D., Sumantadinata, K., Riani, E., & Ernawati, Y. (2012). Akumulasi logam berat dan pengaruhnya terhadap spermatogenesis kerang hijau (Perna viridis). Jurnal Ilmu-Ilmu Perairan dan Perikanan Indonesia, 15, 77-83.

Shamim, S. (2018). Biosorption of heavy metals, biosorption, Jan Derco and Branislav Vrana. Intech Open, 2, 21-49.

Singh, A., & Sharma, R. (2013). Mycoremediation an eco-friendly approach for the degradation of cellulosic wastes from paper industry with the help of cellulases and hemicellulase activity to minimize the industrial pollution. International Journal of Environmental Engineering and Management, 4, 199-206.

Sinly, E., & Johan, A. (2007). Bioremoval, metode alternatif untuk menanggulangi pencemaran logam berat (Artikel). Universitas Lampung, Indonesia.

Siswati, N. D., Indrawati, T., & Rahmah, M. (2009). Biosorpsi logam berat plumbum (pb) menggunakan biomassa Phanerochaete chrysosporium. Jurnal Ilmiah Teknik Lingkungan, 1, 67-72.

Suarsa, I. W. (2017). Biosorpsi logam Pb oleh Phanerochaete chrysosporium, Heliofungia actinifomis dan Trichoderma asperrellum tnj-6 (Karya ilmiah). Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Udayana, Bali, Indonesia.

Sutherland, C., & Venkobachar, C. (2013). Equilibrium modeling of cu (ii) biosorption onto untreated and treated forest macro-fungus Fomes fasciatus. International Journal of Plant, Animal and Environmental Sciences, 3,193-203.

Tay, C. C., Liew, H. H., Yin, C. Y., Abdul-Talib, S., Surif, S., Suhaimi, A. A., & Yong, S. K. (2011). Biosorption of cadmium ions using Pleurotus ostreatus: Growth kinetics, isotherm study and biosorption mechanism. Korean Journal of Chemical Engineering, 28, 825-830.

Thomas, S., Aston, L., Woodruff, D., & Cullinan, V. J. (2009). Field demonstration of mycoremediation for removal of fecal coliform bacteria and nutrients in the Dungeness watershed: Final report. Washington: Pacific Northwest National Laboratory.

Tsezos, M., Remoundaki, E., & Hatzikioseyian, A. (2006). Biosorption-principles and applications for metal immobilization from waste-water streams. Paper presented at the Proceedings of EU-Asia workshop on clean production and nanotechnologies, Seoul, Korea Selatan. Retrieved from https://www.researchgate.net/publication/242079915_Biosorption-principles_and_applications_for_metal_immobilization_from_waste-water_streams

Vimala, R., & Das, N. (2009). Biosorption of cadmium (ii) and lead (ii) from aqueous solutions using mushrooms: A comparative study. Journal of Hazardous Materials, 168, 376- 382.

Wang, J., & Chen, C. J. B. A. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology advance, 24, 427-451.

Wardani, D. A. K., Dewi, N. K., & Utami, N. R. (2014). Akumulasi logam berat timbal (pb) pada daging kerang hijau (Perna viridis) di muara Sungai Banjir Kanal Barat Semarang. Life Science, 3, 1-8.

Wulandari, E., Herawati, E., & Arfiati, D. (2013). Kandungan logam berat pb pada air laut dan tiram Saccostrea glomerata sebagai bioindikator kualitas perairan Prigi, Trenggalek, Jawa Timur. Jurnal Penelitian Perikanan, 1, 10-14.

Yazdani, M., Yap, C. K., Abdullah, F., & Tan, S. G. (2010). An in vitro study on the adsorption, absorption and uptake capacity of zn by the bioremediator Trichoderma atroviride. Environment Asia, 3, 53-59.

Zimmermann, M., & Wolf, K. (2002). Biosorption of metals: The mycota books, industrial applications. Berlin-Heidelberg: Springer.




DOI: https://doi.org/10.15408/kauniyah.v16i2.24569 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120