Isolation and Characterization of Cellulolytic Bacteria During Natural Fermentation of Sweet Orange Peel Waste (Citrus sinensis)

La Ode Sumarlin, Farida Ariyanti, Megga Ratnasari Pikoli, Anna Muawanah, Meyliana Wulandari

Abstract


Abstract

Orange peel is one of organic waste which contains fibers, such as cellulose and hemicellulose utilized by cellulolytic microorganisms as growth media in the fermentation process. Cellulolytic microorganisms are widely used in many industries. This research will observe the profile of bacterial colonies, particularly cellulosic bacteria, during the fermentation of orange peels (Citrus sinensis). Fermentation was carried out during the research process; the bacteria were further isolated in Carboxymethyl Cellulose (CMC) media. The fermentation process was performed for 14 weeks where sampling on the first week was done every day for five days (H0–H4), while sampling from the 2nd to 14th weeks were conducted once a week (M2–M14). The isolation process was carried out in a Nutrient Agar medium with spreading method by calculating the Total Plate Count (TPC) of bacterial colonies and observing the macroscopic morphology of bacterial colonies. Bacterial counts are expressed in Colony Forming Units (CFU)/mL or viable count/mL. The identification of bacterial genus was based on the Bergey's Manual of Determinative Bacteriology. Bacterial isolation from the fermentation of sweet orange peel resulted in 20 isolates where 16 isolates were found to be cellulolytic bacteria through qualitative test in Carboxymethyl Cellulose (CMC) agar plate. The hypothetic genus of 16 bacterial isolates were Eubacterium, Cellulomonas, Microbacterium, Micrococcus, Planococcus, Pseudomonas, Azotobacter, Azomonas, Flavobacterium, Cytophaga, and Jonesia. Isolate F15 (Cytophaga and Azomonas) was found to dominate the growth, while other isolates grew alternately with lesser frequency. Hypothetic genus of bacteria actively involved in the process were cellulolytic bacteria, allowing the liquid of fermentation products to be possibly used in the application.

Abstrak

Kulit jeruk merupakan salah satu limbah organik yang mengandung serat seperti selulosa dan hemiselulosa yang dapat dimanfaatkan oleh mikroorganisme selulolitik sebagai media pertumbuhan dalam proses fermentasi. Mikroorganisme selulolitik telah digunakan di banyak industri. Penelitian ini mengamati profil koloni bakteri selama proses fermentasi kulit jeruk terutama bakteri selulotik. Selama proses penelitian dilakukan proses fermentasi, lalu bakteri diisolasi menggunakan media Carboxyl Methyl Callulose (CMC). Proses fermentasi dilakukan selama 14 minggu dengan rincian sampling pada Minggu ke-1 dilakukan setiap hari selama 5 hari (H0H4), sedangkan minggu ke-2 hingga 14 dilakukan setiap seminggu sekali (M2M14). Proses isolasi dilakukan dalam medium Nutrient Agar dengan teknik sebar dengan perhitungan koloni Total Plate Count (TPC) dan pengamatan morfologi koloni bakteri secara makroskopis. Hasil perhitungan bakteri dinyatakan dalam Colony Forming Units (CFU)/mL atau viabel count/mL. Pendugaan genus bakteri berdasarkan Bergey's Manual of Determinative Bacteriology. Hasil isolasi bakteri dari fermentasi kulit jeruk manis adalah 20 isolat yang 16 di antaranya merupakan bakteri selulolitik melalui uji kualitatif pada media plat Carboxymethyl Cellulose (CMC). Genus hipotetik bakteri dari 16 isolat adalah Eubacterium, Cellulomonas, Microbacterium, Micrococcus, Planococcus, Pseudomonas, Azotobacter, Azomonas, Flavobacterium, Cytophaga, dan Jonesia. Isolat F15 (Cytophaga dan Azomonas) mendominasi pertumbuhan, sedangkan isolat lain tumbuh berselang seling dengan frekuensi yang lebih kecil. Genus bakteri hipotetik yang terlibat aktif adalah bakteri selulolitik sehingga cairan hasil fermentasi dapat digunakan dalam aplikasi.


Keywords


Cellulolytic bacteria; Fermentation; Orange peel; Bakteri selulolitik; Fermentasi; Kulit jeruk

Full Text:

PDF

References


Adeleke, A. J., Odunfa, S. A., Olanbiwonninu, A., & Owoseni, M. C. (2012). Production of cellulase and pectinase from orange peels by fungi. Nature and Science, 10(5),107-112.

Andritsou, V., de Melo, E. M., Tsouko, E., Ladakis, D., Maragkoudaki, S., Koutinas, A. A., & Matharu, A. S. (2018). Synthesis and characterization of bacterial cellulose from citrus-based sustainable resources. ACS Omega, 3, 10365-10373. doi: 10.1021/acsomega.8b01315.

Arekemase, M. O., Adetitun, D. O., & Ahmed, M. I. (2020). Biochemical analysis of some fruit peels and comparison of lactic acid production by authochthonous lactic acid bacteria using fruit peels. Sri Lankan Journal of Biology, 5(1),15-26. doi: 10.4038/sljb.v5i1.53.

Baharuddin, A. S., Razak, M. N. A., Hock, L. S., Ahmad, M. N., Aziz, S. A., Rahman, N. A. A & Shah, U. K. M. (2010). Isolation and characterization of thermophilic cellulase- producing bacteria from empty fruit bunches-palm oil mill effluent compost. American Journal of Applied Sciences, 7, 56-62. doi: 10.3844/ajassp.2010.56.62.

Balasaravanan, T., John, D., & Rathnan, R. K. (2013). Isolation, screening, identification and optimazed production of extracellular cellulase from Bacillus subtilis using cellulosic waste as carbon source. Journal of Microbiology Biotechnology and Food Science, 2(6), 2383-2386.

Bariyah, K. (2010). Garbage enzyme an alternative method in treatment of sullage (Master’s thesis). Civil Engineering, Faculty Kejuruteraan Awam, Universiti Teknologi Malaysia, Malaysia.

Cappuccino, J. G., & Sherman, N. (2001). Microbiology a laboratory manual 6th edition. Toronto: Benjamin Cumming.

Chin, Y. Y., Goeting, R., Yabit., & Shivana, P. (2018). From fruit waste to enzymes. Scientia Bruneiana, 17(2), 1-12.

Cristina, F. S., Batista, L. R., Abreu, L. M., Dias, E. S., & Schwan, R. F. (2008). Succession of bacterial and fungal communities during natural coffee (coffee arabica) fermentation. Food Microbiology, 25(8), 951-957. doi: 10.1016/j.fm.2008.07.003.

Davis, K. E. R., Joseph, S. J., & Janssen, P. H. (2005). Effect of growth medium inoculum size, and incubation time on culturability and isolation of soil bacteria. Applied Environmental Microbiology, 71, 826-834. doi: 10.1128/AEM.71.2.826-834.2005.

Güzel, M., & Akpınar, O. (2019). Production and characterization of bacterial cellulose from citrus peels. Waste and Biomass Valorization, 10, 2165-2175.

Hatami, S., Alikhani, H. A., Besharati, H., Salehrastin, N., Afrousheh, M., & Jahromi, Z. Y. (2008). Investigation on aerobic cellulolitic bacteria in some of north forest and farming soils. American-Eurasian Journal Agriculture and Environment Science, 3(5), 713-716.

Hawashi, M., Ningsih, T. S., Cahyani, S. B. T., Kuswandi., Widjaja, T., & Gunawan, S. (2018). Optimization of the fermentation time and bacteria cell concentration in the starter culture for cyanide acid removal from wild cassava (Manihot glaziovii), MATEC Web of Conferences, 156, 01004. doi: 10.1051/matecconf/201815601004.

Hernawati, T., Lamid, M., Hermadi, H. A., & Warsito, S. H. (2010). Bakteri selulolitik untuk meningkatkan kualitas pakan komplit berbasis limbah pertanian. Veterinaria Medika, 3(3), 205-208.

Holt, J. G., Krieg, N. H., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). Bergeys manual of determinative bacteriology, ninth edition. USA: Lippincot Williams and Wilki N. S.

Imran, M., Anwar, Z., Irshad, M., Asad, M., & Ashfaq, H. (2016) Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: A review. Advances in Enzyme Research, 4(2), 44-55. doi: 10.4236/aer.2016.42005.

Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using gram's iodine. Current Microbiology, 57(5), 503-507.

Kusumaningati, M. A., Nurhatikah, S., & Muhibuddin, A. (2013). Pengaruh konsentrasi inokulum bakteri Zymomonas mobilis dan lama fermentasi pada produksi etanol dari sampah sayur dan buah Pasar Wonokromo Surabaya. Jurnal Sains dan Seni POMITS, 2(2), 2337-3520. doi: 10.12962/j23373520.v2i2.4298.

Lennox, J. A., Abriba, C., Alabi, B. N., & Aubuenyi, F. C. (2010). Comparative degradation of sawdust by microorganisms isolated from it. African Journal of Microbiology Research, 4(17), 1804-1807.

Llorens, J. M. N., Tormo, A., & Garcia, E. M. (2010). Stasionary phase in gram-negatif bacteria. Microbiology Review, 34(4), 476-95. doi:10.1111/j.1574-6976.2010.00213.x.

Madigan, M. T., Matinko, J. M., Dunlap, P. V., & Clark, D. P. (2009). Brock biology of microorganism twelfth edition. San Francisco: Pearson Education.

Maheshwari, S. U., Amutha, S., Hemalatha, G., Senthil, N., Anandham, R., & Kumutha, K. (2018). Characterization of probiotic bacteria from fermented fruit mix. International Journal of Current Microbiology and Applied Sciences, 7(2), 2236-2242. doi: 10.20546/ijcmas.2018.702.269.

Martin, M. A., Siles, J. A., El Bari, H., Chica, A. F., & Martin, A. (2010). Orange peel: Organik waste or energetic resource. Retrieved from http://ramiran.uvlf.sk/ramiran2010/docs/Ramiran2010_0083_final.pdf.

Nazim, F. (2013). Treatment of synthetic greywater using 5% and 10% garbage enzyme solution. Bonfring International Journal of Industrial and Management Science, 3(4), 111-117. doi: 10.9756/BIJIEMS.4733.

Neupane, K., & Khadka, R. (2019). Production of garbage enzyme from different fruit and vegetable wastes and evaluation of its enzymatic and antimicrobial efficacy. Tribhuvan University Journal of Microbiology, 6(1), 113-118. doi: 10.3126/tujm.v6i0.26594.

Prescott, L. M., Harley, J. P., & Klein, D. A. (2005). Microbiology 6th edition. New York: The MC-Graw Hill Companies.

Rangaswamy, B. E., Vanitha, K. P., & Hungund, B. S. (2015). Microbial cellulose production from bacteria isolated from rotten fruit. International Journal of Polymer Science, (2015), 1-8. doi: 10.1155/2015/280784.

Rivas, B., Torrado, A., Torre, P., Converti, A., & Dominguez, J. M. (2008). Submerged citrit acid fermentation on orange peel autohydrolysate. Journal Agriculture Food Chemistry, 56, 2380-2387. doi: 10.1021/jf073388r.

Rui, J., Peng, J., & Lu, Y. (2009). Succession of bacterial populations during plant residue decomposition in rice field soil. Applied and Enviromental Microbiology, 75(14), 4879-4886. doi: 10.1128/EAM.00702-09.

Sumarlin, L., Mulyadi, D., Suryatna., & Asmara, Y. (2013). Identifikasi potensi enzim lipase dan selulase pada sampah kulit buah hasil fermentasi. Jurnal Ilmu Pertanian Indonesia (JIPI), 18(3), 159-166.

Wilkins, M. R., Widmer, W.W., Grohmann, K., & Cameron, R. G. (2007). Hydrolysis of grapefruit peel waste with cellulase and pectinase enzyme. Bioresource Technology, 98(8), 1596-101. doi: 10.1016/j.biortech.2006.06.022.




DOI: https://doi.org/10.15408/kauniyah.v15i2.23357 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120