Analisis Empat Sekuen Barkode DNA Pada Pandan (Benstonea sp.) Asal Danau Kajuik, Riau

Dewi Indriyani Roslim, Intan Sari Nuraini, Siti Nurhayati, Ciska Vivian Sianturi, At-Thahirah At-Thahirah, Herman Herman

Abstract


Barkode DNA merupakan sekuen DNA berukuran pendek yang digunakan untuk identifikasi organisme secara molekuler. Penelitian bertujuan menganalisis empat barkode DNA pada tumbuhan pandan (Benstonea sp.) asal Danau Kajuik, Riau. Metode meliputi isolasi DNA, PCR, elektroforesis, purifikasi, sekuesing, serta analisis bioinformatika. Pada penelitian ini telah diperoleh sekuen DNA untuk atpB-rbcL IGS, trnV-ndhC IGS, ndhF-rpl32 IGS, dan trnQ-5’rps16 IGS sepanjang 812 pb, 924 pb, 952 pb, dan 886 pb, secara berturut-turut. Aksesi yang muncul paling atas pada analisis BLASTn pada keempat sekuen tersebut tidak ada yang memiliki kemiripan 100% dengan Benstonea sp. asal Danau Kajuik, Riau. Walaupun nilai query cover tinggi (93–100%) dan E-value sebesar 0,00. Pada keempat barkode DNA yang diteliti, terdapat beberapa perbedaan nukleotida yang disebabkan oleh mutasi insersi-delesi (indel) (6,99%) maupun subtitusi (4,96%). Mutasi indel paling banyak dijumpai pada sekuen trnV-ndhC IGS dan mutasi subtitusi paling banyak terjadi pada sekuen ndhF-rpl32 IGS. Nukleotida kritis yang menjadi penciri bagi Benstonea sp. asal Danau Kajuik, Riau, dijumpai pada sekuen ndhF-rpl32 IGS dan trnQ-5’rps16 IGS.  Simpulan, dua sekuen DNA yaitu ndhF-rpl32 IGS dan trnQ-5’rps16 IGS berpotensi menjadi barkode DNA untuk identifikasi tumbuhan ini secara molekuler. Ketersediaan barkode DNA pada database publik sangat diperlukan untuk menunjang identifikasi organisme secara molekuler.

Abstract

DNA barcode is a piece of short DNA that is developed for molecular identification of organisms. This study aims to analyze four DNA barcodes in pandan plant (Benstonea sp.) from Kajuik Lake, Riau. Methods included DNA extraction, PCR, electrophoresis, purification, sequencing, and bioinformatics analysis. The DNA sequences of atpB-rbcL IGS, trnV-ndhC IGS, ndhF-rpl32 IGS, and trnQ-5’rps16 IGS have been obtained with the length of 812 pb, 924 pb, 952 pb, and 886 pb, respectively. The top accession in BLASTn analysis results showed that there was no accession that had 100% similarity to Benstonea sp. from Kajuik Lake, Riau even though the query cover high (93100%) and E-value of 0,00. There were some nucleotide variations caused by insertion-deletion (indel) mutation (6,99%) and subtitution (4,96%). Indel was most occur in trnV-ndhC IGS and subtitution in ndhF-rpl32 IGS. Critical nucleotides that were be a characteristic for Benstonea sp. from Kajuik Lake, Riau were seen in ndhF-rpl32 IGS and trnQ-5’rps16 IGS. Conclusion,  both of ndhF-rpl32 IGS and trnQ-5’rps16 IGS are potentially as DNA barcodes for molecular identification of this plant. The avaibility of the DNA barcodes is very important to support of organisms molecular identifications.


Keywords


Barkode DNA; atpB-rbcL IGS; Benstonea sp.; DNA barcode; ndhF-rpl32 IGS; trnQ-5’rps16 IGS; trnV-ndhC IGS;

Full Text:

PDF

References


Baldi, A., & Dixit, V. (2008). Enhanced artemisinin production by cell cultures of Artemisia annua. Current Trends in Biotechnology and Pharmacy, 2(2), 341-389.

Baranski, R., & Cazzonelli, C. I. (2016). Carotenoid biosynthesis and regulation in plants. Chichester, UK: John Wiley & Sons, Ltd.

Benítez-García, I., Vanegas-Espinoza, P. E., Meléndez-Martínez, A. J., Heredia, F. J., Paredes-López, O., & Del Villar-Martínez, A. A. (2014). Callus culture development of two varieties of Tagetes erecta and carotenoid production. Electronic Journal of Biotechnology, 17(3), 107-113.

Bondet, V., Brand-Williams, C., & Berset, C. (1997). kinetics and mechanisms of antioxidant activity using the DPPH free radical method, LWT. Food Science and Technology, 30(6).

Chawla, H. S. (2003). Introduction to plant biotechnology. New Hemsphire: Science Publishers Inc.

Davey, M. W., Kenis, K., & Keulemans, J. (2006). Genetic control of fruit vitamin c content. Plant Physiology, 142, 343-351.

Dechaux, C., & Boitel-Conti, M. (2005). A strategy for overaccumulation of scopolamine in Datura innoxia hairy root cultures. Acta biologica cracoviensia Series Botanica, 47(1), 101-107.

Dewick, M. (2002). Medicinal natural products a biosynthetic approach. Chichester: John wiley & sons. Ltd.

Endress, R. (1994). Plant cell biotechnology. Berlin: Springer-Verlag

Fitriani, A. (2003). Kandungan ajmalisin pada kultur kalus Catharanthus roseus (L) G. Don setelah dielistasi homogent jamur Phytium aphanidermalium (Tesis master). Institut Pertanian Bogor, Bogor, Indonesia.

Giovannoni, J. J. (2007). Completing a pathway to plant vitamin synthesis. Proceedings of the National Academy Sciences of the United States of America Journal, 104(22), 9190-9110. doi: 10.1073/pnas.0703222104.

Hartman, H. T., & Kester, D. E. (1997). Plant propagation principles and practice ed ke-6. New Jersey: Prentice Hall.

Iranbakhsh, A. R., Oshagi, M. A., & Ebadi, M. (2007). Growth and production optimization of tropane alkaloids in Datura stramonium cell suspension culture. Pakistan Journal of Biological Sciences, 10, 1236-1242.

Iskandar, N. N., & Iriawati, P. (2016). Vinblastine and vincristine production on madagascar periwinkle (Catharanthus roseus (L.) G. Don) callus culture treated with polethylene glycol. Makara Journal of Science, 70(1), 7-16. doi: 10.7454/mss.v20i1.5656.

Iswari, R. S., & Susanti, R. (2016). Antioxidant activity from various tomato processing. Journal of Biology & BiologyEducation, 8(1), 127-132.

Jabeen, N., Chaundhry, Z., Rashid, H., & Mirza, B. (2005). Effect of genotype and explants type on in vitro shoot regeneration of tomato (Lycopersicon esculentum Mill). Pakistan Journal of botany, 37(4), 899-903.

Jefriyanto, I., Runtuwene, R. J. M., & Feti, F. (2012). Penentuan total fenolik dan uji aktivitas antioksidan pada biji dan kulit buah pinang yaki (Areca vestiaria Giseke). Jurnal Ilmiah Sains, 12(2).

Kala, S. C., Mallikarjuna, K., & Aruna, P. (2014). An efficient protocol devised for rapid callus induction from leaf explants of Biophytum sensitivum (Linn) DC. International Journal of Phytopharmacy, 4(1), 20-24. doi: 10.7439/ijpp.v4i1.74.

Karuppusamy, S. (2009). A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. Academic Journals: Journal of Medicinal Plants Research, 1222-1239.

Llorente B., Torres-Montilla, S., Morelli, L., Florez-Sarasa, I., Ezquerro, M., D’andrea, L., … Concepcion, R. (2019). Synthetic biogenesis of chromoplasts from leaf chloroplasts. bioRxiv Preprint- the Preprint Server for Biology, 1-26. doi: 10.1101/819177.

Marchev, A., Christiane, H., Schulz, S., Georgiev, V., Steingroewer, J., Bley, T., & Pavlov, A. (2014). Sage in vitro cultures: A promising tool for the production of bioactive terpenes and phenolic substances. Biotechnology Letter, 36, 211-221.

Motlhanka, D., Houghton, P., Miljkovic-Brake, A., & Habtemariam, S. (2010). A novel pentacyclic triterpene glycoside from a resin from Commiphora glandulosa Bostnawa. African Journal of Pharmacy and Pharmacology, 4(8), 549-554.

Nurchayati, Y., & Rahmah, F. A. (2010). Kandungan asam askorbat pada kultur kalus rosela (Hibiscus sabdariffa L.) dengan variasi konsentrasi sukrosa dalam media MS. Majalah Obat Tradisional, 15(2), 71-74.

Nurchayati, Y., Santosa, S., Nugroho, L. H., & Indrianto, A. (2016). Growth pattern and copper accumulation in callus of Datura metel. Biosaintifika: Journal of Biology & Biology Education, 8(2), 135. doi: 10.15294/biosaintifika.v8i2.5177.

Oleszkiewicz, T., Chodacka, M. K., Hendel, A. M., Zubko, M., Stróż, D., Kurczyńska, E., … Baranski, R. (2018). Unique chromoplast organization and carotenoid gene expression in carotenoid rich carrot callus. Planta, 248, 1455-1471. doi: 10.1007/s00425-018-2988-5.

Olusegun, A., Makun, H. A., Ogara, I. M., Edema, M., Idahor, K. O., Oluwabamiwo, B. F. & Eshiett, M. E. (2012). We are IntechOpen, the World’s leading Publisher of Open Access books Built by scientists, for scientists TOP 1%. Intech, i(tourism), 38. doi: 10.1155/2018/2961767.

Osman, H. A., Taha, H. S., Youssef, M. M. A., El-Gindi, A. Y., Ammen, H. H., & Lushein, A. M. S. (2012). Establishment of calli cultures from different explants of T. erecta and T. patula. Journal of Application Science Research, 8(7), 3850-3854.

Othman, R., Kammona, S., Jaswir, I., Jamal, P., & Hatta, F. A. M. (2017). Effect of abiotic stress on carotenoids accumulation in orange sweet potato callus under light and dark conditions. International Food Research Journal, 24, 481-487

Palazon, J., Navarro-Ocana, A., Hernandez-Vazquez, L., & Mirjalili, M. H. (2000). Application of metabolic engineering to the production of scopolamine. Molecules, 13, 1722-1742.

Sari, Y. P., Kusumawati, E., Saleh, C., Kustiawan, W., & Sukartiningsih. (2018). Effect of sucrose and plant growth regulators on callogenesis and preliminary secondary metabolic of different explant Myrmecodia tuberosa. Nusantara Bioscience, 10(3), 183-192.

Sun, T., Yuan, H., Cao, H., Yazdani, M., Tadmor, Y., & Li, L. (2018). carotenoid metabolism in plants: The role of plastids. Molecular Plant, 11, 58-74.

Tarrahi., & Rezanejad, F. (2017). Callogenesis and production of anthocyanin and chlorophyll in callus cultures of vegetative and floral explants in Rosa gallica and Rosa hybrida (Rosaceae). Turkey Journal of Botany, 37, 1145-1154. doi:10.3906/bot-1205-42.

Trigiano, R. N., & Gray, D. J. (2005). Plant development and biotechnology. Boca Raton: CRC Press.

Trimulyono, G., Solichatun, S. D., & Marliana. (2004). pertumbuhan kalus dan kandungan minyak atsiri nilam (Pogostemon cablin (Blanco) Bth.) dengan perlakuan asam α-naftalen asetat (NAA) dan kinetin. Biofarmasi, 2(1), 9-14

Veerporte, R., & Memmelink, J. (2002). Engineering secondary metabolite production in plants. Current Opinion in Biotechnology, 13, 181-187.

Welsch, R., Beyer, P., Hugueney, P., Kleinig, H., & von Lintig, J. (2000). Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis. Planta, 211, 846-54. doi: 10.1007/ s004250000352.

Zulfiqar, B., Abbasi, N. A., Ahmad, T., & Hafiz, I. A. (2009). Effect of explant sources and different concentrations of plant growth regulators on in vitro shoot proliferation and rooting of avocado (Persea americana Mill.) cv “Fuerte”. Pakistan Journal of Botany, 41(5), 2333-2346.




DOI: https://doi.org/10.15408/kauniyah.v16i1.21697 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120