In-vitro Callus Development and The Bioactive Compounds of Tomato (Lycopersicon esculentum Mill.)

Yulita Nurchayati, Erma Prihastanti, Rini Budihastuti



Bioactive compounds in tomatoes can be produced through the development of callus culture. This study aimed to investigate callus development and observe bioactive compounds and antioxidant activities in explants and callus. The cotyledon and hypocotyl from the sprouts were induced to form callus on Murashige and Skoog (MS) medium supplemented with NAA 2.5 mg/L combined with kinetin 0.5 mg/L and 2,4 D 1 mg/L. All parts of seedling and callus were analyzed for their bioactive compounds and antioxidant activity using Spectrophotometer UV-Vis, whereas the other bioactive compounds were identified by Gas Chromatography-Mass Spectrophotometry. This research applied a Completely Randomized Design with sample sources of tomato sprout and callus from cotyledon and hypocotyl, with 3 replicates. The result showed that friable callus was able to be developed from both explants through the addition of NAA-Kin to MS medium. The three compounds were observed in callus and all explants. These calluses produced high antioxidant compounds from their pigments and ascorbic acid. The metabolites will be analyzed according to the perspective of their role. Major groups of compounds from GC-MS are dominated by hydrocarbons. Callus culture has a potential as the source of bioactive compounds.


Senyawa bioaktif pada tomat dapat diproduksi melalui kultur kalus, Penelitian ini bertujuan untuk mengkaji perkembangan kalus dan mengobservasi jenis senyawa bioaktif serta aktivitas antioksidan pada eksplan dan kalus. Kotiledon dan hipokotil  dari kecambah diinduksi membentuk kalus di dalam medium MS dengan penambahan NAA 2,5 mg/L dan kinetin 0,5 mg/L, maupun 2,4 D 1 mg/L tunggal.  Semua bagian kecambah dan kalus dianalisis kandungan senyawa bioaktif dan aktivitas antioksidannya dengan menggunakan Spektrofotometer UV-Vis. Sementara itu, senyawa bioaktif lainnya diidentifikasi dengan menggunakan Kromatografi Gas-Spektrofotometer Massa. Penelitian ini dilaksanakan dengan Rancangan Acak Lengkap dengan faktor sumber eksplan : kecambah, kalus yang berasal dari kotiledon maupun dari  hipokotil disertai 3 ulangan.  Hasil penelitian menunjukkan bahwa kalus remah dapat berkembang dari semua bagian kecambah pada medium MS dengan penambahan NAA dan kinetin. Terdapat tiga senyawa yang diobservasi baik pada kalus maupun sumber eksplannya. Kalus tersebut menghasilkan senyawa antioksidan yang tinggi, berdasarkan dari kandungan pigmen dan dari asam askorbat. Metabolit-metabolit tersebut akan dianalisis lebih lanjut terhadap peranannya. Kelompok senyawa yang terbanyak dari hasil GC-MS didominasi oleh hidrokarbon. Kultur kalus memiliki potensi sebagai sumber senyawa bioaktif tanaman.


Ascorbic acid; Carotenoid; Chlorophyll; Secondary metabolites, Tissue culture; Asam askorbat; Karotenoid; Klorofil; Kultur jaringan; Metabolit sekunder

Full Text:



Baldi, A., & Dixit, V. (2008). Enhanced artemisinin production by cell cultures of Artemisia annua. Current Trends in Biotechnology and Pharmacy, 2(2), 341-389.

Baranski, R., & Cazzonelli, C. I. (2016). Carotenoid biosynthesis and regulation in plants. Chichester, UK: John Wiley & Sons, Ltd.

Benítez-García, I., Vanegas-Espinoza, P. E., Meléndez-Martínez, A. J., Heredia, F. J., Paredes-López, O., & Del Villar-Martínez, A. A. (2014). Callus culture development of two varieties of Tagetes erecta and carotenoid production. Electronic Journal of Biotechnology, 17(3), 107-113.

Bondet, V., Brand-Williams, C., & Berset, C. (1997). kinetics and mechanisms of antioxidant activity using the DPPH free radical method, LWT. Food Science and Technology, 30(6).

Chawla, H. S. (2003). Introduction to plant biotechnology. New Hemsphire: Science Publishers Inc.

Davey, M. W., Kenis, K., & Keulemans, J. (2006). Genetic control of fruit vitamin c content. Plant Physiology, 142, 343-351.

Dechaux, C., & Boitel-Conti, M. (2005). A strategy for overaccumulation of scopolamine in Datura innoxia hairy root cultures. Acta biologica cracoviensia Series Botanica, 47(1), 101-107.

Dewick, M. (2002). Medicinal natural products a biosynthetic approach. Chichester: John wiley & sons. Ltd.

Endress, R. (1994). Plant cell biotechnology. Berlin: Springer-Verlag

Fitriani, A. (2003). Kandungan ajmalisin pada kultur kalus Catharanthus roseus (L) G. Don setelah dielistasi homogent jamur Phytium aphanidermalium (Tesis master). Institut Pertanian Bogor, Bogor, Indonesia.

Giovannoni, J. J. (2007). Completing a pathway to plant vitamin synthesis. Proceedings of the National Academy Sciences of the United States of America Journal, 104(22), 9190-9110. doi: 10.1073/pnas.0703222104.

Hartman, H. T., & Kester, D. E. (1997). Plant propagation principles and practice ed ke-6. New Jersey: Prentice Hall.

Iranbakhsh, A. R., Oshagi, M. A., & Ebadi, M. (2007). Growth and production optimization of tropane alkaloids in Datura stramonium cell suspension culture. Pakistan Journal of Biological Sciences, 10, 1236-1242.

Iskandar, N. N., & Iriawati, P. (2016). Vinblastine and vincristine production on madagascar periwinkle (Catharanthus roseus (L.) G. Don) callus culture treated with polethylene glycol. Makara Journal of Science, 70(1), 7-16. doi: 10.7454/mss.v20i1.5656.

Iswari, R. S., & Susanti, R. (2016). Antioxidant activity from various tomato processing. Journal of Biology & BiologyEducation, 8(1), 127-132.

Jabeen, N., Chaundhry, Z., Rashid, H., & Mirza, B. (2005). Effect of genotype and explants type on in vitro shoot regeneration of tomato (Lycopersicon esculentum Mill). Pakistan Journal of botany, 37(4), 899-903.

Jefriyanto, I., Runtuwene, R. J. M., & Feti, F. (2012). Penentuan total fenolik dan uji aktivitas antioksidan pada biji dan kulit buah pinang yaki (Areca vestiaria Giseke). Jurnal Ilmiah Sains, 12(2).

Kala, S. C., Mallikarjuna, K., & Aruna, P. (2014). An efficient protocol devised for rapid callus induction from leaf explants of Biophytum sensitivum (Linn) DC. International Journal of Phytopharmacy, 4(1), 20-24. doi: 10.7439/ijpp.v4i1.74.

Karuppusamy, S. (2009). A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. Academic Journals: Journal of Medicinal Plants Research, 1222-1239.

Llorente B., Torres-Montilla, S., Morelli, L., Florez-Sarasa, I., Ezquerro, M., D’andrea, L., … Concepcion, R. (2019). Synthetic biogenesis of chromoplasts from leaf chloroplasts. bioRxiv Preprint- the Preprint Server for Biology, 1-26. doi: 10.1101/819177.

Marchev, A., Christiane, H., Schulz, S., Georgiev, V., Steingroewer, J., Bley, T., & Pavlov, A. (2014). Sage in vitro cultures: A promising tool for the production of bioactive terpenes and phenolic substances. Biotechnology Letter, 36, 211-221.

Motlhanka, D., Houghton, P., Miljkovic-Brake, A., & Habtemariam, S. (2010). A novel pentacyclic triterpene glycoside from a resin from Commiphora glandulosa Bostnawa. African Journal of Pharmacy and Pharmacology, 4(8), 549-554.

Nurchayati, Y., & Rahmah, F. A. (2010). Kandungan asam askorbat pada kultur kalus rosela (Hibiscus sabdariffa L.) dengan variasi konsentrasi sukrosa dalam media MS. Majalah Obat Tradisional, 15(2), 71-74.

Nurchayati, Y., Santosa, S., Nugroho, L. H., & Indrianto, A. (2016). Growth pattern and copper accumulation in callus of Datura metel. Biosaintifika: Journal of Biology & Biology Education, 8(2), 135. doi: 10.15294/biosaintifika.v8i2.5177.

Oleszkiewicz, T., Chodacka, M. K., Hendel, A. M., Zubko, M., Stróż, D., Kurczyńska, E., … Baranski, R. (2018). Unique chromoplast organization and carotenoid gene expression in carotenoid rich carrot callus. Planta, 248, 1455-1471. doi: 10.1007/s00425-018-2988-5.

Olusegun, A., Makun, H. A., Ogara, I. M., Edema, M., Idahor, K. O., Oluwabamiwo, B. F. & Eshiett, M. E. (2012). We are IntechOpen, the World’s leading Publisher of Open Access books Built by scientists, for scientists TOP 1%. Intech, i(tourism), 38. doi: 10.1155/2018/2961767.

Osman, H. A., Taha, H. S., Youssef, M. M. A., El-Gindi, A. Y., Ammen, H. H., & Lushein, A. M. S. (2012). Establishment of calli cultures from different explants of T. erecta and T. patula. Journal of Application Science Research, 8(7), 3850-3854.

Othman, R., Kammona, S., Jaswir, I., Jamal, P., & Hatta, F. A. M. (2017). Effect of abiotic stress on carotenoids accumulation in orange sweet potato callus under light and dark conditions. International Food Research Journal, 24, 481-487

Palazon, J., Navarro-Ocana, A., Hernandez-Vazquez, L., & Mirjalili, M. H. (2000). Application of metabolic engineering to the production of scopolamine. Molecules, 13, 1722-1742.

Sari, Y. P., Kusumawati, E., Saleh, C., Kustiawan, W., & Sukartiningsih. (2018). Effect of sucrose and plant growth regulators on callogenesis and preliminary secondary metabolic of different explant Myrmecodia tuberosa. Nusantara Bioscience, 10(3), 183-192.

Sun, T., Yuan, H., Cao, H., Yazdani, M., Tadmor, Y., & Li, L. (2018). carotenoid metabolism in plants: The role of plastids. Molecular Plant, 11, 58-74.

Tarrahi., & Rezanejad, F. (2017). Callogenesis and production of anthocyanin and chlorophyll in callus cultures of vegetative and floral explants in Rosa gallica and Rosa hybrida (Rosaceae). Turkey Journal of Botany, 37, 1145-1154. doi:10.3906/bot-1205-42.

Trigiano, R. N., & Gray, D. J. (2005). Plant development and biotechnology. Boca Raton: CRC Press.

Trimulyono, G., Solichatun, S. D., & Marliana. (2004). pertumbuhan kalus dan kandungan minyak atsiri nilam (Pogostemon cablin (Blanco) Bth.) dengan perlakuan asam α-naftalen asetat (NAA) dan kinetin. Biofarmasi, 2(1), 9-14

Veerporte, R., & Memmelink, J. (2002). Engineering secondary metabolite production in plants. Current Opinion in Biotechnology, 13, 181-187.

Welsch, R., Beyer, P., Hugueney, P., Kleinig, H., & von Lintig, J. (2000). Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis. Planta, 211, 846-54. doi: 10.1007/ s004250000352.

Zulfiqar, B., Abbasi, N. A., Ahmad, T., & Hafiz, I. A. (2009). Effect of explant sources and different concentrations of plant growth regulators on in vitro shoot proliferation and rooting of avocado (Persea americana Mill.) cv. “Fuerte”. Pakistan Journal of Botany, 41(5), 2333-2346.

DOI: Abstract - 0 PDF - 0


  • There are currently no refbacks.

This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120