Potensi Bakteri Endofit Asal Tanaman Pisang Klutuk (Musa balbisiana Colla) Sebagai Pendukung Pertumbuhan Tanaman

Triastuti Rahayu, Yekti Asih Purwestri, Siti Subandiyah, Donny Widianto



Bakteri endofit yang terdapat di tanaman pisang Klutuk dan keterkaitannya dengan sifat ketahanan tanaman pisang Klutuk pada cekaman biotik dan abiotik belum dilaporkan dalam publikasi ilmiah. Sebanyak 93 isolat bakteri endofit telah diperoleh dari pisang Klutuk, tetapi belum diketahui kemampuannya sebagai pendukung pertumbuhan tanaman (PPT). Penelitian ini bertujuan untuk mengetahui karakter isolat-isolat bakteri endofit dari pisang Klutuk sebagai pendukung pertumbuhan tanaman. Kelompok bakteri Gram positif dan negatif ditentukan dengan metode pewarnaan Gram. Kemampuan memfiksasi nitrogen (N2), memproduksi asam indol asetat (AIA), dan antagonisme terhadap Fusarium oxysporum f. sp. cubense (Foc) diuji untuk mengetahui kemampuan isolat bakteri endofit sebagai pendukung pertumbuhan tanaman. Hasil penelitian menunjukkan bahwa 87,10% isolat bakteri endofit dari tanaman pisang Klutuk merupakan kelompok bakteri Gram negatif dan 82,80% (77 isolat bakteri) menunjukkan karakter tunggal atau ganda sebagai PPT. Di dalam kelompok isolat tersebut, terdapat berturut-turut 60, 38, dan 20 bakteri yang mampu memfiksasi N2, menghasilkan AIA, dan antagonisme terhadap Foc. Hasil pengujian ini menunjukkan bahwa bakteri endofit dari pisang Klutuk didominasi oleh bakteri kelompok Gram negatif yang memiliki kemampuan sebagai pendukung pertumbuhan tanaman.


The role of endophytic bacteria on the biotic and abiotic resistance of Klutuk banana plants has never been reported. A total of 93 endophytic bacterial isolates were obtained from Klutuk banana plants in a previous study, but their potency as Plant Growth Promoting Bacteria (PGPB) is not elucidated. This study aims to characterize those 93 endophytic bacterial isolates. Gram staining was performed to differentiate between Gram-positive and negative bacteria among the isolates. The ability to fix nitrogen (N2), produce indole acetic acid (IAA) and antagonize Fusarium oxysporum f. sp. cubense (Foc) were also examined to determine their potency as PGPB. The results showed that 87.1% of the endophytic bacterial isolates were Gram-negative bacteria and 83.87% (78 bacterial isolates) had single or multiple traits of PGPB. Among the isolates, 60, 38, and 20 bacteria were able to fix N2, produce IAA, and antagonize Foc, respectively. The results indicated that the endophytic bacteria inhabiting Klutuk banana plant are dominated by Gram-negative PGPB.


Bakteri endofit; Pendukung pertumbuhan tanaman (PPT); Pisang Klutuk; Endophytic bacteria; Klutuk banana; Plant Growth Promoting (PGP)

Full Text:



Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research, 221(December 2018), 36–49. https://doi.org/10.1016/j.micres.2019.02.001.

Allard-Massicotte, R., Tessier, L., Lécuyer, F., Lakshmanan, V., Lucier, J. F., Garneau, D., Beauregard, P. B. (2016). Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. mBio, 7(6), 1–10. https://doi.org/10.1128/mBio.01664-16.

Andrade, L. F., Larisse, G., Dorasio, O., Nietsche, S., Xavier, A. A., Costa, M. R., Silva, G. (2014). Analysis of the Abilities of Endophytic Bacteria Associated with Banana Tree Roots to Promote Plant Growth. Journal of Microbiology, 52(1), 27–34. https://doi.org/10.1007/s12275-014-3019-2.

Bacilio-Jiménez, M., Aguilar-Flores, S., Ventura-Zapata, E., Pérez-Campos, E., Bouquelet, S., & Zenteno, E. (2003). Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant and Soil, 249(2), 271–277. https://doi.org/10.1023/A:1022888900465.

Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). the Role of Root Exudates in Rhizosphere Interactions With Plants and Other Organisms. Annual Review of Plant Biology, 57(1), 233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159.

Barra, P. J., Inostroza, N. G., Mora, M. L., Crowley, D. E., & Jorquera, M. A. (2016). Bacterial consortia inoculation mitigates the water shortage and salt stress in an avocado (Persea americana Mill.) nursery. Applied Soil Ecology, 2561, 1–9. https://doi.org/10.1016/j.apsoil.2016.11.012.

Borah, A., Das, R., Mazumdar, R., & Thakur, D. (2019). Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics. Journal of Applied Microbiology, 127(3), 825–844. https://doi.org/10.1111/jam.14356.

Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and Functions of the Bacterial Microbiota of Plants. Annual Review of Plant Biology, 64(1), 807–838. https://doi.org/10.1146/annurev-arplant-050312-120106.

Cappuccino, E. and Welsh, C. (2019). Microbiology A Laboratory Manual. United States of America: Pearson.

Coleman-Derr, D., Desgarennes, D., Fonseca-Garcia, C., Gross, S., Clingenpeel, S., Woyke, T., Tringe, S. (2015). Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytologist, 798–811. https://doi.org/10.1111/nph.13697.

Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29–37. https://doi.org/10.1016/j.jare.2019.03.004.

Fernandes, T. P., Nietsche, S., Costa, M. R., Aparecida, A., Francine, D., Silva, G., Pereira, T. (2013). Potential use of endophytic bacteria to promote the plant growth of micropropagated banana cultivar Prata Anã. African Journal of Biotechnology, 12(31), 4915–4919. https://doi.org/10.5897/AJB2012.2958.

Hardoim, P. R., Overbeek, L. S. Van, Berg, G., Pirttilä, M., Compant, S., Campisano, A., & Döring, M. (2015). The Hidden World within Plants : Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiology and Molecular Biology Reviews, 79(3), 293–320. https://doi.org/10.1128/MMBR.00050-14.

Kandel, S., Joubert, P., & Doty, S. (2017). Bacterial Endophyte Colonization and Distribution within Plants. Microorganisms, 5(4), 77. https://doi.org/10.3390/microorganisms5040077.

Karthik, M., Pushpakanth, P., Krishnamoorthy, R., & Senthilkumar, M. (2017). Endophytic bacteria associated with banana cultivars and their inoculation effect on plant growth. The Journal of Horticultural Science and Biotechnology, 00(00), 1–9. https://doi.org/10.1080/14620316.2017.1310600.

Köberl, M., Dita, M., Martinuz, A., Staver, C., & Berg, G. (2017). Members of Gammaproteobacteria as indicator species of healthy banana plants on Fusarium wilt-infested fields in Central America. Scientific Reports, 7(March), 1–9. https://doi.org/10.1038/srep45318.

Kox, M. A., & Jetten, M. (2015). Principles of Plant-Microbe Interactions: Microbes for sustainable agriculture (B. Lugtenberg, ed.). https://doi.org/10.1007/978-3-319-08575-3_1.

Lamsal, K., Kim, S. W., Kim, Y. S., & Lee, Y. S. (2012). Application of rhizobacteria for plant growth promotion effect and biocontrol of anthracnose caused by Colletotrichum acutatum on pepper. Mycobiology, 40(4), 244–251. https://doi.org/10.5941/MYCO.2012.40.4.244.

Latupeirissa, Y., Nawangsih, A. A., Mutaqin, K. H., & Unpatti, K. (2014). Selection and identification of bacteria from Tongkat Langit banana (Musa troglodytarum L.) to control the blood disease bacteria. International Society for Southeast Asian Agricultural Sciences, 20(2), 110–120.

Mai-Prochnow, A., Clauson, M., Hong, J., & Murphy, A. B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports, 6(November), 1–11. https://doi.org/10.1038/srep38610.

Matos, A., M, D., Gomes, I. C. P., Nietsche, S., & Xavier, A. A. (2017). Phosphate solubilization by endophytic bacteria isolated from banana trees. Anais Da Academia Brasileira de Ciências, 1–10. https://doi.org/ 10.1590/0001-3765201720160111.

Napitupulu, T. P., Kanti, A., & Sudiana, I. M. (2019). the Phsyiological Character of Bacteria Isolated From Banana’S Rhizosphere From Malaka, East Nusa Tenggara, and Their Role on Plant Growth Promotion on Marginal Land. Berita Biologi, 18(3). https://doi.org/10.14203/beritabiologi.v18i3.3748.

Ngamau, C. N., Matiru, V. N., Tani, A., & Wangari, C. (2012). Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. African Journal of Microbiology Research, 6(34), 6414–6422. https://doi.org/10.5897/AJMR12.1170.

Ravi, I., Uma, S., Vaganan, M. M., & Mustaffa, M. M. (2013). Phenotyping bananas for drought resistance. Frontiers in Physiology, 4(9), 1–15. https://doi.org/10.3389/fphys.2013.00009.

Robinson, J. C., & Saúco, V. G. (2010). Bananas and PLantains (2nd editio, Vol. 0; J. Atherton, ed.). London, UK: CAB International.

Roeland L. Berendsen, C. M. J. P. and P. A. H. M. B. (2012). The rhizosphere microbiome and plant health. Review Trends in Plant Science, 17(8), 478–486. https://doi.org/10.1016/j.tplants.2012.04.001.

Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92–99. https://doi.org/10.1016/j.micres.2015.11.008.

Sekhar, A. C., & Thomas, P. (2015). Isolation and Identification of Shoot-Tip Associated Endophytic Bacteria from Banana cv . Grand Naine and Testing for Antagonistic Activity against Fusarium oxysporum f . sp . cubense. American Journal of Plant Sciences, 6(April), 943–954.

Sharma, C. K., Vishnoi, V. K., Dubey, R. C., & Maheshwari, D. K. (2018). A twin rhizospheric bacterial consortium induces systemic resistance to a phytopathogen Macrophomina phaseolina in mung bean. Rhizosphere, 5(January), 71–75. https://doi.org/10.1016/j.rhisph.2018.01.001.

Souza, S. A., Xavier, A. A., Costa, M. R., Cardoso, A. M. S., Pereira, M. C. T., & Nietsche, S. (2013). Endophytic bacterial diversity in banana ‘ Prata Anã ’ (Musa spp.) roots. Genetics and Molecular Biology, 264, 252–264. https://doi.org/10.1590/S1415-47572013000200016.

Suhaimi, N. S. M., Goh, S. Y., Ajam, N., Othman, R. Y., Chan, K. G., & Thong, K. L. (2017). Diversity of microbiota associated with symptomatic and non-symptomatic bacterial wilt-diseased banana plants determined using 16S rRNA metagenome sequencing. World Journal of Microbiology and Biotechnology, 33(9), 1–10. https://doi.org/10.1007/s11274-017-2336-0.

Sutanto, A. (2014). Karakterisasi Molekuler Ketahanan Beberapa Kultivar Pisang (Musa spp.) Terhadap Penyakit Layu Panama (Fusarium oxysporum f.sp. cubense). Disertasi. Bogor: Sekolah Pascasarjana IPB.

Tripathi, L., & Odipio, J. (2008). A rapid technique for screening banana cultivars for resistance to Xanthomonas wilt. European Journal of Plant Pathology ·, 121(February 2015), 9–19. https://doi.org/10.1007/s10658-007-9235-4.

Vanegas, J., & Uribe-Vélez, D. (2014). Selection of mixed inoculants exhibiting growth-promoting activity in rice plants from undefined consortia obtained by continuous enrichment. Plant and Soil, 375(1–2), 215–227. https://doi.org/10.1007/s11104-013-1960-1.

Wang, Y., Yang, C., Yao, Y., Wang, Y., Zhang, Z., & Xue, L. (2016). The diversity and potential function of endophytic bacteria isolated from Kobreasia capillifolia at alpine grasslands on the Tibetan. Journal of Integrative Agriculture, 15(9), 2153–2162. https://doi.org/10.1016/S2095-3119(15)61248-5.

Warman, N. M., & Aitken, E. A. B. (2018). The movement of Fusarium oxysporum f.sp. cubense (sub-tropical race 4) in susceptible cultivars of banana. Frontiers in Plant Science, 871(November), 1–9. https://doi.org/10.3389/fpls.2018.01748.

Xu, L. (2014). Protein secretion systems in bacterial pathogens. Frontiers in Biology, 9(6), 437–447. https://doi.org/10.1007/s11515-014-1333-z.

Yang, R., Liu, P., & Ye, W. (2017). Illumina-based analysis of endophytic bacterial diversity of tree peony (Paeonia Sect. Moutan) roots and leaves. Brazilian Journal of Microbiology, 48(4), 695–705. https://doi.org/10.1016/j.bjm.2017.02.009.

Yuan, J., Zhang, N., Huang, Q., Raza, W., Li, R., Vivanco, J. M., & Shen, Q. (2015). Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Scientific Reports, 5(July), 1–8. https://doi.org/10.1038/srep13438.

Zhao, Y. (2010). Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology, 61(May), 49–64. https://doi.org/10.1146/annurev-arplant-042809-112308.

DOI: https://doi.org/10.15408/kauniyah.v14i2.19140 Abstract - 0 PDF - 0


  • There are currently no refbacks.

This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01  /public/site/images/rachma/logo_sinta_75/public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120