Pengaruh Anti-Stres Jus Microgreens Ketumbar (Coriandrum sativum L.) Terhadap Lalat Buah (Drosophila melanogaster) yang Diinduksi Methotrexate

Mohamad Agus Salim, Muhammad Subandi



Saat ini, masyarakat dihadapkan pada kondisi kehidupan yang selalu mengganggu metabolisme normalnya dan mengurangi kebugaran tubuh yang dikenal dengan stres. Penelitian ini bertujuan untuk mengevaluasi kemampuan jus microgreens ketumbar (Coriandrum sativum L.) (JMK) sebagai agen anti-stres pada Drosophila melanogaster (selanjutnya disebut Drosophila) jantan tipe liar yang diinduksi methotrexate (MTX). Disiapkan empat kelompok perlakuan, yaitu kelompok pertama Drosophila yang tidak diberi perlakuan sebagai kontrol. Kelompok kedua, Drosophila yang mendapatkan perlakuan 10 ppm MTX, kelompok ketiga Drosophila yang mendapat perlakuan 10% JMK, dan kelompok keempat Drosophila yang mendapat perlakuan ganda 10 ppm MTX + 10% JMK. Setiap kelompok perlakuan diulang 4 botol kultur dan setiap botol kultur berisi 30 ekor Drosophila jantan tipe liar. Penelitian ini dilaksanakan selama 7 hari pengamatan. Beberapa parameter pengamatan diukur seperti kelulusan hidup dan kemampuan lokomotor (geotaksis negatif). Sedangkan parameter fisiologi yang diamati, yaitu kandungan catalase (CAT) dan superoxide dismutase (SOD). Hasil pengamatan menunjukkan bahwa JMK dapat memperbaiki kelulusan hidup dan geotaksis negatif Drosophila yang menurun bila mendapat perlakuan MTX saja. Begitupun kandungan CAT, dan SOD yang meningkat pada kelompok Drosophila yang mendapat perlakuan MTX, akan menurun pada kelompok Drosophila yang mendapat perlakuan JMK sebagai indikator berkurangnya kondisi stres. Kesimpulan dari penelitian ini, JMK memiliki potensi sebagai agen anti-stress pada Drosophila yang diinduksi MTX.


Currently, people are dealing with situations that always interfere with their normal metabolism and decline their physical fitness, known as stress. This study attempted to evaluate the potential of cilantro (Coriandrum sativum L) microgreens juice as an anti-stress agent in wild-type male methotrexate-induced Drosophila melanogaster (Drosophila). Four treatment groups were prepared, namely the first group of non-treated Drosophila, as a control, the second group of Drosophila treated with methotrexate (10 ppm), the third group of Drosophila treated with cilantro microgreens juice (10%) and the fourth group of Drosophila treated with methotrexate (10 ppm) and cilantro microgreens juice (10%) as dual treatment. Each treatment group consisted of 4 bottles of culture as replication, and each culture bottle contained 30 wild-type male Drosophila. This research was conducted for 7 days of observation. Several parameters were observed and measured, such as survival rate and locomotor ability (negative geotaxis). Meanwhile, the physiological parameters observed were catalase (CAT) and superoxide dismutase (SOD) content. The results showed that cilantro microgreens juice could improve survival rate and negative geotaxis of Drosophila which were observed to decrease when treated with methotrexate alone. Similarly, increased levels of CAT and SOD were found in Drosophila group that received methotrexate treatment, but both parameters decreased in Drosophila group treated cilantro microgreens juice as an indicator of stress reduction. To conclude, cilantro microgreens juice has the potential as an anti-stress agent in methotrexate-induced Drosophila.


Jus; Ketumbar; Methotrexate; Microgreens; Cilantro; Drosophila; Juice

Full Text:



Alexander, E. M., Aguiyi, J. C., Mdekera, I. W., Ogwu, O. S., Imoleayo, O. O., Ugokwe, C. V., & Pam, D. (2019). The climbing performance, neuromuscular transmitter (ACHE) activity, reproductive performance and survival of Drosophila melanogaster fed diet with Mangifera indica cold aqueous leaf extract. Journal of Applied Life Sciences International, 22(2), 1-11. doi: 10.9734/JALSI/2019/V22I230120.

Ali, N. (2018). Digest: Stress and inbreeding depression in Drosophila melanogaster*. Evolution, 72(8), 1727-1729. doi: 10.1111/EVO.13524.

Alqarni, A. M., & Zeidler, M. P. (2020). How does methotrexate work?. Biochemical Society Transactions, 48(2), 559-567. doi: 10.1042/BST20190803.

Beers, R. F., & Sizer, I. W. (1952). A Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase*. doi: 10.1016/ S0021-9258(19)50881-X.

Bramley, D. (2021). What dose of folic acid to use with methotrexate in rheumatoid arthritis? Drug and Therapeutics Bulletin, 59(7), 103-106. doi: 10.1136/DTB.2020.000061.

Cheuczuk, D. C., Freitas, S., Vaz, J., & Braguini, W. L. (2017). Valeriana officinalis and melatonin: Evaluation of the effects in Drosophila melanogaster rapid iterative negative geotaxis (RING) test. Journal of Medicinal Plants Research, 11(44), 703-712. doi: 10.5897/ JMPR2017.6492.

Choe, U., Yu, L. L., & Wang, T. T. Y. (2018). The science behind microgreens as an exciting new food for the 21st Century. Journal of Agricultural and Food Chemistry, 66(44), 11519-11530. doi: 10.1021/ACS.JAFC.8B03096.

Cronstein, B. N., & Aune, T. M. (2020). Methotrexate and its mechanisms of action in inflammatory arthritis. Nature Reviews Rheumatology 2020 16:3, 16(3), 145-154. doi: 10.1038/s41584-020-0373-9.

Denou, A., Ahmed, A., Dafam, D. G., Ochala, S. O., Omale, S., Inngjerdingen, K. T., … Aguiyi, J. C. (2020). Safety evaluation of polysaccharides isolated from the water extract of Argemone mexicana L. (Papaveraceae) in Drosophila melanogaster. Journal of Applied Pharmaceutical Science, 10(2), 44-48. doi: 10.7324/ JAPS.2020.102007.

Elsayed, A., & Azab, A. E. (2019). Oxidative stress and antioxidant mechanisms in human body. Article in Journal of Biotechnology. doi: 10.15406/jabb.2019.06.00173.

Folarin, R., Adeyanju, M. M., Ayodele, K., Adeyanju, M., Adenowo, T., Olugbode, J., & Obadeyin, E. (2019). Geotactical and neurochemical phenotypes of Drosophila melanogaster following Nigella sativa oil exposure nutrition view project nigella in ADHD treatment. Nigerian Journal of Neuroscience, 10(2), 71-76.

Gormally, B. M. G., & Romero, L. M. (2020). What are you actually measuring? A review of techniques that integrate the stress response on distinct time-scales. Functional Ecology, 34(10), 2030-2044. doi: 10.1111/1365-2435.13648.

Henning, S. M., Yang, J., Shao, P., Lee, R.-P., Huang, J., Ly, A., … Li, Z. (2017). Health benefit of vegetable/fruit juice-based diet: Role of microbiome. Scientific Reports 2017, 7(1), 1-9. doi: 10.1038/s41598-017-02200-6.

Ibrahim, E., Dobeš, P., Kunc, M., Hyršl, P., & Kodrík, D. (2018). Adipokinetic hormone and adenosine interfere with nematobacterial infection and locomotion in Drosophila melanogaster. Journal of Insect Physiology, 107, 167-174. doi: 10.1016/ J.JINSPHYS.2018.04.002.

Karasik, A., Váradi, A., & Szeri, F. (2018). In vitro transport of methotrexate by Drosophila multidrug resistance-associated protein. PLOS ONE, 13(10), e0205657. doi: 10.1371/JOURNAL.PONE.0205657.

Khayatnezhad, M., & Gholamin, R. (2021). The effect of drought stress on the superoxide dismutase and chlorophyll content in durum wheat genotypes. Advancements in Life Sciences, 8(2), 119-123.

Kondeva-Burdina, M., Simeonova, R., Vitcheva, V., Lazarova, I., Gevrenova, R., Zheleva-Dimitrova, D., … Danchev, N. D. (2017). Effects of Asphodeline lutea compounds on toxicity models in isolated rat microsomes and hepatocytes. Letters in Drug Design & Discovery, 15(3). doi: 10.2174/1570180814666170306122707.

Lall, S., Mudunuri, A., Santhosh, S., Malwade, A., Thadi, A., Kondakath, G., & Dey, S. (2019). Adult crowding induces sexual dimorphism in chronic stress-response in Drosophila melanogaster. BioRxiv, 702357. doi: 10.1101/702357.

Loyola, A. C., Zhang, L., Shang, R., Dutta, P., Li, J., & Li, W. X. (2019). Identification of methotrexate as a heterochromatin-promoting drug. Scientific Reports 2019, 9(1), 1-7. doi: 10.1038/s41598-019-48137-w.

Mahil, S. K., Bechman, K., Raharja, A., Domingo-Vila, C., Baudry, D., Brown, M. A., … Smith, C. H. (2021). The effect of methotrexate and targeted immunosuppression on humoral and cellular immune responses to the COVID-19 vaccine BNT162b2: a cohort study. The Lancet Rheumatology. doi: 10.1016/S2665-9913(21)00212-5.

Müller, K. R., Martins, I. K., Rodrigues, N. R., da Cruz, L. C., Barbosa-Filho, V. M., Macedo, G. E., ... & Posser, T. (2017). Anacardium microcarpum extract and fractions protect against paraquat-induced toxicity in Drosophila melanogaster. Experimental and Clinical Sciences Journal, 16, 302. doi: 10.17179/excli2016-684.

Palmitessa, O. D., Renna, M., Crupi, P., Lovece, A., Corbo, F., & Santamaria, P. (2020). Yield and quality characteristics of brassica microgreens as affected by the NH4:NO3 molar ratio and strength of the nutrient solution. Foods 2020, 9(5), 677. doi: 10.3390/FOODS9050677.

Panchal, K., & Tiwari, A. K. (2017). Drosophila melanogaster “a potential model organism” for identification of pharmacological properties of plants/plant-derived components. Biomedicine & Pharmacotherapy, 89, 1331-1345. doi: 10.1016/J.BIOPHA.2017.03.001.

Pham, H. M., Xu, A., Schriner, S. E., Sevrioukov, E. A., & Jafari, M. (2018). Cinnamaldehyde improves lifespan and healthspan in Drosophila melanogaster models for alzheimer’s disease. BioMed Research International, 2018. doi: 10.1155/2018/3570830.

Prasad, B. P. R., & Ashadevi, J. S. (2018). Withania somnifera promotes stress resistant activity in Drosophila melanogaster. Journal of Drug Delivery and Therapeutics, 8(6-s), 83-88. doi: 10.22270/JDDT.V8I6-S.2082.

Salim, M. A., Subandi, M., & Yuniarti, Y. (2021). Neuroprotective efficacy of Dunaliella salina against paraquat-induced neurotoxicity in Drosophila melanogaster. Jordan Journal of Biological Sciences, 14(2).

Senevirathne, G. I., Gama-Arachchige, N. S., & Karunaratne, A. M. (2019). Germination, harvesting stage, antioxidant activity and consumer acceptance of ten microgreens. Ceylon Journal of Science, 48(1), 91. doi: 10.4038/CJS.V48I1.7593/GALLEY/6083/.

Sriti, J., Bettaieb, I., Bachrouch, O., Talou, T., & Marzouk, B. (2019). Chemical composition and antioxidant activity of the coriander cake obtained by extrusion. Arabian Journal of Chemistry, 12(7), 1765-1773. doi: 10.1016/J.ARABJC.2014.11.043.

Xiao, Z., Lester, G. E., Luo, Y., & Wang, Q. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. Journal of Agricultural and Food Chemistry, 60(31), 7644-7651. doi: 10.1021/JF300459B.

Yaribeygi, H., Panahi, Y., Sahraei, H., Johnston, T. P., & Sahebkar, A. (2017). The impact of stress on body function: A review. Experimental and Clinical Sciences Journal, 16, 1057. doi: 10.17179/EXCLI2017-480.

Zheng, J., Zhou, Y., Li, S., Zhang, P., Zhou, T., Xu, D.-P., & Li, H.-B. (2017). Effects and mechanisms of fruit and vegetable juices on cardiovascular diseases. International Journal of Molecular Sciences 2017, 18(3), 555. doi: 10.3390/ IJMS18030555.

DOI: Abstract - 0 PDF - 0


  • There are currently no refbacks.

This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120