Perbedaan Keanekaragaman dan Kelimpahan Araknida Antar Zonasi Gua di Kawasan Karst Tasikmalaya

Isma Dwi Kurniawan, Ida Kinasih, Tri Cahyanto, Hilda Ayu Emalia, Nida Hidayaturrohmah

Abstract


Abstrak

Araknida merupakan kelompok fauna yang umum dijumpai di gua dan berperan penting menjaga keseimbangan ekosistem gua. Kelompok fauna ini dapat ditemukan di seluruh zona gua baik terang, remang, maupun gelap. Penelitian ini bertujuan untuk mengetahui perbedaan keanekaragaman dan kelimpahan araknida berdasarkan zonasi gua. Pengambilan data dilakukan di 3 gua yang terletak di kawasan Karst Tasikmalaya, yaitu Gua Sarongge, Liang Boeh, dan Liang Seungit. Pencuplikan araknida dilakukan dengan teknik hand collecting, sedangkan penghitungan individu dengan direct counting. Selain itu, dilakukan pengukuran parameter abiotik yang terdiri dari suhu udara, suhu tanah, kelembapan udara, kelembapan tanah, dan intensitas cahaya. Data dianalisis dengan uji indeks similaritas Jaccard, one-way ANOVA, Kruskal Wallis, dan Canonical correlation analysis. Terdapat 311 individu araknida tergolong dalam 3 ordo dan 7 morfospesies yang berhasil dikoleksi. Mayoritas araknida tergolong kategori adaptasi troglofil. Terdapat kemiripan komposisi spesies yang tinggi antara zona remang dan gelap (indeks similaritas 0,833) dibandingkan kemiripan keduanya dengan zona terang (0,571 dan 0,429). Kelimpahan individu araknida antar zona tidak berbeda secara signifikan. Mayoritas spesies memiliki preferensi habitat dengan kondisi intensitas cahaya rendah dan kelembapan tinggi.

Abstract

Arachnid is one of the cave-adapted fauna with diverse cave representatives and plays a vital role in maintaining ecosystem balance. This group is widely distributed in all cave zonation, namely entrance, twilight, and dark zones. This study aimed to reveal the difference in diversity and abundance of arachnids in different caves zonation. The study was carried out in three caves situated in Tasikmalaya karst region, namely Sarongge, Liang Boeh, and Seungit. Arachnids were sampled through hand collecting, while abundance was estimated through direct counting. Air and soil temperatures, relative humidity, soil moisture, and light intensity were also measured. Data were analysed through Jaccard’s similarity index, one-way ANOVA, Kruskal Wallis, and CCA. In total, 311 individuals belonged to 3 orders and 7 morphospecies were identified. Most observed morphospecies were categorized as troglophiles. There was a great degree of similarity in species composition between twilight and dark zones (similarity 0.833) compared to entrance zone (0.571 and 0.429, respectively). Meanwhile, abundance was relatively similar. Most species prefer habitats with low light intensity but high humidity. 

Keywords


Araknida; Ekosistem gua; Keanekaragaman; Kelimpahan; Abundance; Arachnids; Cave ecosystem; Diversity

Full Text:

PDF

References


Bertani, R., Bichuette, M. E., & Pedroso, D. R. (2013). Tmesiphantes hypogeus sp. nov. (Araneae, Theraphosidae), the first troglobitic tarantula from Brazil. Anais Da Academia Brasileira de Ciências, 85(1), 235-243. doi: 10.1590/s0001-37652013005000007.

Candia-Ramírez, D. T., & Valdez-Mondragón, A. (2014). A new troglobitic species of the spider genus Tengella dahl (Araneae, Tengellidae) from Chiapas, Mexico. Zootaxa, 3764(3), 377-386. doi: 10.11646/zootaxa.

Coddington, J. A., & Colwell, R. K. (2001). Arachnids. In S. A. Levin (Eds.), Encyclopedia of biodiversity (pp. 199-218). USA: Academic Press.

Cuff, J. P., Aharon, S., Steinpress, I. A., Seifan, M., Lubin, Y., & Gavish-Regev, E. (2021). It’s all about the zone: Spider assemblages in different ecological zones of Levantine caves. Diversity, 13(11), 576. doi: 10.3390/d13110576.

Culver, D. C., & Pipan, T. (2009). The biology of caves and other subterranean habitats. New York: Oxford University Press.

Deharveng, L., & Bedos, A. (2012). Diversity patterns in the tropics. In W. B. White, & D. C. Culver (Eds.), Encyclopedia of caves (2nd ed., pp. 238-250). Amsterdam: Academic Press.

Derraik, J. G. B., Early, J. W., Closs, G. P., & Dickinson, K. J. M. (2010). Morphospecies and taxonomic species comparison for Hymenoptera. Journal of Insect Science, 10, 108 doi: insectsicence.org/10.108.

Dunlop, J. A., Scholtz, G., & Selden, P. A. (2013). Water-to-land transitions. In A. Minelli, G. Boxshall, & G. Fusco (Eds.), Arthropod biology and evolution: Molecules, development, morphology (pp. 417-439). Heidelberg: Springer.

Ferreira, R. L., Silva, W. D. C., Vieira, C. V., & Silva, E. M. S. (2011). Aspects of the behavior and reproduction of Mastigoproctus brasilianus Koch, 1843, (Arachnida: Uropygi: Telyphonidae). Revista de Etología, 10(1), 3–11.

Gibb, T. J., & Oseto, C. Y. (2005). Arthropod Collection and Identification: Laboratory and Field Techniques. USA: Academic Press

Hidayaturrohmah, N., Hernawati, D., & Chaidir, D. M. (2021). Keanekaragaman arthropoda berdasarkan 3 zona pencahayaan di Gua Sarongge Tasikmalaya. BIOTIK: Jurnal Ilmiah Biologi Teknologi dan Kependidikan, 8(2), 245-258. doi: 10.22373/biotik.v8i2.7778.

Howarth, F. G. (1993). High-stress subterranean habitats and evolutionary change in cave-inhabiting arthropods. The American Naturalist, 142(Suppl 1), 565-577. doi: 10.1086/285523.

Howarth, F. G., & Moldovan, O. T. (2018a). Where cave animals live. In O. T. Moldovan, L. Kovac, & S. Halse (Eds.), Caves ecology (pp. 23-37). Switzerland: Springer.

Howarth, F. G., & Moldovan, O. T. (2018b). The ecological classification of cave animals and their adaptations. In O. T. Moldovan, L. Kovac, & S. Halse (Eds.), Caves ecology (pp. 41-67). Switzerland: Springer.

Huber, B. A. (2018). Cave-dwelling pholcid spiders (Araneae, Pholcidae): A review. Subterranean Biology, 26, 1-18. doi: 10.3897/subtbiol.26.26430.

Jager, P. (2014). Heteropoda Latreille, 1804: New species, synonymies, transfers, and records (Araneae: Sparassidae: Heteropodinae). Arthropoda Selecta, 23(2), 145-188. doi: 10.15298/arthsel.23.2.06.

Jocque, R., & Dippenaar-Schoeman, A. S. (2006). Spider families of the world. Tervuren: Royal Museum for Central Africa.

Kurniawan, I. D., Rahmadi, C., Ardi, T. E., Nasrullah, R., Willyanto, M. I., & Setiabudi, A. (2018a). The impact of lampenflora on cave-dwelling arthropods in Gunungsewu karst, Java, Indonesia. Biosaintifika, 10(22), 275-283. doi: 10.15294/biosaintifika.v10i2.13991.

Kurniawan, I. D., Soesilohadi, R. C. H., Rahmadi, C., Caraka, R. E., & Pardamean, B. (2018b). The difference on arthropod communities’ structure within show caves and wild caves in Gunungsewu karst area, Indonesia. Ecology, Environment and Conservation, 24(1), 72-81.

Kurniawan, I. D, Rahmadi, C., Caraka, R. E., & Ardi, T. E. (2018c). Cave-dwelling arthropod community of Semedi show cave in Gunungsewu karst area, Pacitan, East Java, Indonesia. Biodiversitas, 19(3), 857-866. doi: 10.13057/biodiv/d190314.

Kurniawan, I. D., & Rahmadi, C. (2019). Ekologi gua wisata: Dampak aktivitas wisata terhadap lingkungan dan kehidupan biota gua serta upaya konservasinya. Yogyakarta: Graha Ilmu.

Kurniawan, I. D., Rahmadi, C., Caraka, R. E., Rahman, I. M., Kinasih, I., Toharudin, T., … Lee, Y. (2020). Correspondence between bats population and terrestrial cave-dwelling arthropods community in Tasikmalaya karst area. Communications in Mathematical Biology and Neuroscience, 2020, 59. doi: 10.28919/cmbn/4830.

Mammola, S. (2019). Finding answers in the dark: Caves as models in ecology fifty years after Poulson and White. Ecography, 42, 1331-1351. doi: 10.1111/ecog.03905.

Macud, A. M., & Nuneza, O. M. (2014). The diversity of cave macro-invertebrates in Amighty cave, Tagoloan, Lanao del norte, Philippines. Journal of Biodiversity and Environmental Science, 5(3), 376-386.

Maqtan, A., Omar, H., Mustafa, M., Izzati, N. A. M., & Karam, D. S. (2018). Morphospecies diversity of soil invertebrates in cultivated and uncultivated fields. Journal of Bioscience and Applied Research, 4(4), 507-518. doi: 10.21608/jbaar.2018.154947.

Mazebedi, R., & Hesselberg, T. (2020). A preliminary survey of the abundance, diversity and distribution of terrestrial macroinvertebrates of Gcwihaba cave, Northwest Botswana. Subterranean Biology, 35, 49-63. doi: 10.3897/subtbiol.35.51445.

Miller, J., & Rahmadi, C. (2012). A troglomorphic spider from Java (Araneae, Ctenidae, Amauropelma). ZooKeys, 163, 1-11. doi: 10.3897/zookeys.163.2265.

Parimuchová, A., Dušátková, L. P., Kováč, Ľ., Macháčková, T., Slabý, O., & Pekár, S. (2021). The food web in a subterranean ecosystem is driven by intraguild predation. Scientific Reports, 11(1), 1-11. doi: 10.1038/s41598-021-84521-1.

Pemerintah Kabupaten Tasikmalaya. (2019). Draft laporan kawasan ekosistem esensial Karst Tasikmalaya. Tasikmalaya: Pemerintah Kabupaten Tasikmalaya.

Perry, R. W. (2013). A review of factors affecting cave climates for hibernating bats in temperate North America. Environmental Reviews, 21(1), 28-39. doi: 10.1139/er-2012-0042.

Prakarsa, T. B. P., & Ahmadin, K. (2017). Diversitas arthropoda gua di kawasan Karst Gunung Sewu, studi gua-gua di Kabupaten Wonogiri. BIOTROPIC: The Journal of Tropical Biology, 1(2), 31-36. doi: 10.29080/biotropic.2017.1.2.31-36.

Prakarsa, T. B. P., Kurniawan, I. D., & Putro, S. T. J. (2021). Biospeleologi: Biodiversitas gua, potensi, dan permasalahannya. Yogyakarta: Bintang Pustaka Madani.

Price, L. (2014). Species diversity and food-web complexity in the caves of Malaysia. Ambient Science, 1(2), 1-8. doi: 10.21276/ambi.2014.01.2.ga01.

Prous, X., Ferreira, R. L., & Jacobi, C. M. (2015). The entrance as a complex ecotone in a neotropical cave. International Journal of Speleology, 44(2), 177-189. doi: 10.5038/1827-806X.44.2.7.

Rahmadi, C. (2002). Keanekaragaman arthropoda di Gua Ngerong, Tuban, Jawa Timur. Zoo Indonesia, 29, 19-27.

Rahmadi, C., & Suhardjono, Y. R. (2007). Arthropoda gua di Nusakambangan Cilacap, Jawa Tengah. Zoo Indonesia, 16(1), 21-29.

Rahmadi, C. (2008). Cave fauna of Java. Retrieved from https://www.rufford.org/files/40.11.06 Detailed Final Report.pdf.

Rahmadi, C., & Harvey, M. S. (2008). A first epigean species of Stygophrynus Kraepelin (Amblypygi: Charontidae) from Java and adjacent islands, Indonesia with notes on S. dammermani Roewer, 1928. Raffles Bulletin of Zoology, 56(2), 281-288.

Rahmadi, C., Harvey, M. S., & Kojima, J. I. (2011). The status of the whip spider subgenus Neocharon (Amblypygi: Charontidae) and the distribution of the genera Charon and Stygophrynus. Journal of Arachnology, 39(2), 223-229. doi: 10.1636/CA10-77.1.

Rahmadi, C., Wiantoro, S., & Nugroho, H. (2018). Sejarah alam Gunungsewu. Jakarta: LIPI Press.

Real, R., & Vargas, J. M. (1996). The probabilistic basis of Jaccard’s index of similarity. Systematic Biology, 45(3), 380-385. doi: 10.1093/sysbio/45.3.380.

Romero, A. (2009). Cave biology: Life in darkness. New York: Cambridge University Press.

Rowland, J. M., & Cooke, J. A. L. (1973). Systematics of the arachnid order Uropygida (= Thelyphonida). Journal of Arachnology, 1, 55-71. doi: 10.2307/3705297.

Suhardjono, Y. R., & Ubaidillah, R. (2012). Fauna karst dan gua Maros Sulawesi Selatan. Jakarta: LIPI Press.

Wenying, Y. (2000). Pictorial keys to soil animals of China. Beijing: Science Press.




DOI: https://doi.org/10.15408/kauniyah.v15i2.18816 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120