Kandungan Nutrisi, Aktivitas Antioksidan, dan Kadar Fenolik Total Tubuh Buah Kulat Basi (Termitomyces sp.) Asal Kabupaten Kapuas Hulu

Henny Sulistiany, Mustika Sari

Abstract


Abstrak

Kulat basi (Termitomyces sp.) adalah jamur asal Kabupaten Kapuas Hulu yang hidup bersimbiosis dengan rayap. Jamur ini digemari masyarakat karena rasanya yang enak. Penelitian ini bertujuan untuk mengetahui kandungan nutrisi, aktivitas antioksidan, dan kadar fenolik total dari ekstrak metanol, etil asetat, dan n-heksan tubuh buah Kulat basi (Termitomyces sp.). Uji kandungan nutrisi meliputi kadar air, abu, protein, lemak, dan karbohidrat dilakukan berdasarkan metode Sudarmadji et al. (1984). Aktivitas antioksidan dianalisis dengan metode DPPH dan kadar fenolik total dianalisis dengan metode Folin-Ciocalteu. Hasil penelitian menunjukkan bahwa uji proksimat (kadar air, abu, protein, lemak, dan karbohidrat) dari Kulat basi secara berurutan adalah 16,09 ± 0,19%, 15,64 ± 0,58%, 31,78 ± 0,87%, 1,42 ± 0,02% dan 5,62 ± 0,94%. Hasil ini menunjukkan bahwa Kulat basi mengandung mineral dan protein yang tinggi, serta kandungan lemak dan karbohidrat yang rendah. Aktivitas antioksidan tertinggi dalam meredam radikal DPPH ditunjukkan oleh ekstrak metanol tubuh buah jamur dengan IC50 sebesar 2,54 ± 0,02 mg/mL. Kandungan fenolik total ekstrak metanol juga menunjukkan nilai yang paling tinggi (0,85 ± 0,01 mg GAE/g ekstrak) dibandingkan dengan ekstrak etil asetat dan n-heksan. Dengan demikian, Kulat basi (Termitomyces sp.) berpotensi sebagai makanan fungsional karena memiliki nutrisi yang baik dan berpotensi sebagai antioksidan alami. 

Abstract

Kulat basi (Termitomyces sp.) is a mushroom from Kapuas Hulu Regency that lives in symbiosis with termites. This mushroom is popular because of its delicious taste. This study was conducted to determine the nutrient content, antioxidant activity and total phenolic content of methanol, ethyl acetate and n-hexane extracts of Kulat basi (Termitomyces sp.). Testing of the nutrient content test including moisture, ash, protein, fat and carbohydrate content was carried out based on the method of Sudarmadji et al. (1984). Antioxidant activity was analyzed using the DPPH method and total phenolic content was determined using the Folin-Ciocalteu method. The results showed that the proximate test (moisture, ash, protein, fat and carbohydrate content) of Kulat basi mushroom was 16.09 ± 0.19%, 15.64 ± 0.58%, 31.78 ± 0.87%, 1.42 ± 0.02% and 5.62 ± 0.94%, respectively. These finding indicated that Kulat basi mushroom contained high minerals and protein, also low fat and carbohydrate content. The highest antioxidant activity in reducing DPPH radicals was shown by the methanol extract of mushroom with IC50of 2.54 ± 0.02 mg/mL. The total phenolic content of methanol extract also revealed the highest value (0.85 ± 0.01 mg GAE/g extract) compared to ethyl acetate and n-hexane extracts. In conclusion, Kulat basi (Termitomyces sp.) has the potential as a functional food for its high nutrient content and natural antioxidant potential.


Keywords


Antioksidan; Fenolik; Nutrisi; Termitomyces sp.; Antioxidants; Kulat basi; Nutrients; Phenolic

Full Text:

PDF

References


Abdullah, N., Ismail, S. M., Aminudin, N., Shuib, A. S., & Lau, B. F. (2012). Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities. Journal Evidence-Based Complementary and Alternative Medicine, 2012, 1-12. doi: 10.1155/2012/464238.

Agbor, G. A., Vinson, J. A., & Donnelly, P. E. (2014). Folin-Ciocalteau reagent for polyphenolic assay. International Journal of Food Sciences, Nutrition and Dietetics, 3(8), 147-156. doi: 10.19070/2326-3350- 1400028.

Ahmad, N., Mahmood, F., Khalil, S. A., Zamir, R., Fazal, H., & Abbasi, B. H. (2014). Antioxidant activity via DPPH, gram-positive and gram-negative antimicrobial potential in edible mushrooms. Toxicology and Industrial Health, 30(9), 826-834. doi: 10.1177/0748233712463775.

Barros, L., Venturini, B. A., Baptista, P., Estevinho, L. M., & Ferreira, I. (2008). Chemical composition and biological properties of Portuguese wild mushrooms: A comprehensive study. Journal of Agricultural and Food Chemistry, 56(10), 3856-3862. doi: 10.1021/jf8003114.

Dimitrios, B. (2006). Sources of natural phenolic antioxidants. Trends in Food Science and Technology, 17(9), 505-512. doi: 10.1016/j.tifs.2006.04.004.

Falandysz, J. (2008). Selenium in edible mushrooms. Journal of Environmental Science and Health, 26(3), 256-299. doi: 10.1080/10590500802350086.

Gambato, G., Todescato, K., Pav, E. M., Scortegagna, A., Fontana, R. C., Salvador, M., & Camassola, M. (2016). Evaluation of productivity and antioxidant profile of solidstate cultivated macrofungi Pleurotus albidus and Pycnoporus sanguineus. Bioresource Technology, 207(2016), 46-51. doi: 10.1016/j.biortech.2016.01.121.

Garrab, M., Edziri, H., El Mokni, R., Mastouri, M., Mabrouk, H. & Douki, W. (2019). Phenolic composition, antioxidant and anticholinesterase properties of the three mushrooms Agaricus silvaticus Schaeff., Hydnum rufescens Pers. and Meripilus giganteus (Pers.) Karst. in Tunisia. South African Journal of Botany, 124(2019), 359-363. doi: 10.1016/j.sajb.2019.05.033.

Gençcelep, H., Uzun, Y., Tunçtürk, Y., & Demirel, K. (2009). Determination of mineral contents of wild-grown edible mushrooms. Food Chemistry, 113(2009), 1033-1036. doi: 10.1016/j.foodchem.2008.08.058.

Ghahremani-Majad, H., & Dashti, F. (2015). Chemical composition and antioxidant properties of cultivated button mushroom (Agaricus bisporus). Horticulture, Environment and Biotechnology, 56(3), 376-382.

Grangeia, C., Heleno, S. A., Barros, L., Martins, A., & Ferreira, I. (2011). Effects of trophism on nutritional and nutraceutical potential of wild edible mushrooms. Food Research International, 44(2011), 1029-1035. doi: 10.1016/j.foodres.2011.03.006.

Heleno, S., Martins, A., Queiroz, M. J. & Ferreira, I. (2015). Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chemistry, 173(2015), 501-513. doi: 10.1016/j.foodchem.2014.10.057.

Hussein, J. M., Tibuhwa, D. D., Mshandete, A. M., & Kivaisi, A. K. (2015). Antioxidant properties of seven wild edible mushrooms from Tanzania. African Journal of Food Science, 9(9), 471-479. doi: 10.5897/AJFS2015.1328.

Islam, T., Yu, X., & Xu, B. (2016). Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushrooms commonly consumed in China. LWT-Food Science and Technology, 72(2016), 423-431. doi: 10.1016/j.lwt.2016.05.005.

Jaworska, G., Pogoń, K., Skrzypczak, A., & Bernaś, E. (2015). Composition and antioxidant properties of wild mushrooms Boletus edulis and Xerocomus badius prepared for consumption. Journal of Food Science and Technology, 52(12), 7944-7953. doi: 10.1007/s13197-015-1933-x.

Kolayli, S., Sahin, H., Aliyazicioglu, R., & Sesli, E. (2012). Phenolic components and antioxidant activity of three edible wild mushrooms from Trabzon, Turkey. Chemistry of Natural Compounds, 48(1), 137-140. doi: 10.1007/s10600-012-0182-8.

Kosanic, M., Rankovic, B., & Dasic, M. (2013). Antioxidant and antimicrobial properties of mushrooms. Bulgarian Journal of Agricultural Science, 19(5),1040-1046.

Krüzselyi, D., Móricza, A. M., & Vetterb, J. (2020). Comparison of different morphological mushroom parts based on the antioxidant activity. LWT-Food Science and Technology, 127 (2020), 109436. doi: 10.1016/j.lwt.2020.109436.

Lin, X., Xu, J., & Sun, D. (2019). Investigation of moisture content uniformity of microwave-vacuum dried mushroom (Agaricus bisporus) by NIR hyperspectral imaging. LWT-Food Science and Technology, 109(2019), 108-117. doi: 10.1016/j.lwt.2019.03.034.

Ma, G., Yang, W., Zhao, L., Pei, F., Fang, D., & Hu, Q. (2018). A critical review on the health promoting effect of mushrooms nutraceuticals. Food Science and Human Wellness, 7(2), 125-133. doi: 10.1016/j.fshw.2018.05.002.

Martinez-Medina, G. A., Chavez-Gonzales, M. L., Verma, D. K., Prado-Barragan, L. A., Martinez-Hernandez, J. L., Flores-Gallegos, A. C., … Aguilar, C. N. (2021). Bio-funcional components in mushroom, a health opportunity: Ergothionine and huitlacohe as recent trends. Journal of Functional Foods, 77(2021), 1-17. doi: 10.1016/j.jff.2020.104326.

Mau, J. L., Lin, H. C., & Chen, C. C. (2002). Antioxidant properties of several medicinal mushrooms. Journal of Agricultural and Food Chemistry, 50(21), 6072-6077. doi: 10.1021/jf0201273.

Palacios, I., Lozano, M., Moro, C., D'Arrigo, M., Rostagno, M. A., Martínez, J. A., … Villares, G. A. (2011). Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chemistry, 128(3), 674-678. doi: 10.1016/j.foodchem.2011.03.085.

Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. doi:10.1021/jf0502698.

Puttaraju, N. G., Venkateshaiah S. U., Dharmesh S. M., Urs S. M. N., & Somasundaram, R. (2006). Antioxidant activity of indigenous mushrooms. Journal of Agricultural and Food Chemistry. 54(26), 9764-9772. doi: 10.1021/jf0615707.

Rai, S. N., Mishra, D., Singh, P., Vamanu, E., Singh, M. P. (2021). Therapeutic applications of mushrooms and their biomolecules along with a glimpse of in silico approach in neurodegenerative diseades. Biomedicine & Pharmacotherapy, 137(2021), 1-14. doi: 10.1016/j.biopha.2021.111377.

Rajoriya, A., & Gupta, N. (2015). Proximate and antioxidant activity of mycelia of Termitomyces microcarpus and Amanita loosii. Agricultural Research & Technology, 1(1), 13-16. doi: 10.19080/ARTOAJ.2015.01.555554.

Rasalanavho, M., Moodley, R., & Jonnalagadd, S. B. (2020). Elemental bioaccumulation and nutritional value of five species of wild growing mushrooms from South Africa. Food Chemistry, 319(2020), 1-11. doi: 10.1016/j.foodchem.2020.126596.

Rathore, H., Prasad, S., & Sharma S. (2017). Mushroom nutraceuticals for improved nutrition and better human health: a review. Pharma Nutrition, 5(2), 35-46. doi: 10.1016/j.phanu.2017.02.001.

Retnowati, A., Rugayah, Rahajoe, J. S., Arifiani, D. (2019). Status keanekaragaman hayati Indonesia: Kekayaan jenis tumbuhan dan jamur Indonesia. Jakarta: LIPI Press.

Reis, F. S., Pereira, E., Barros, L., Sousa, M. J., Martins, A., & Ferreira, I. (2011). Biomolecule profiles in inedible wild mushrooms with antioxidant value. Molecules, 16(6), 4328-4338. doi: 10.3390/molecules16064328.

Salazar-Aranda, R., Perez-Lopez, L. A., Lopez-Arroyo, J., Alanis-Garza, B. A., & de Torres, N. W. (2011). Antimicrobial and antioxidant activities of plants from Northeast of Mexico. Evidence-Based Complementary Alternative Medicine, 2011, 1-6. doi: 10.1093/ecam/nep127.

Sanchez, C. (2017). Reactive oxygen species and antioxidant properties from mushrooms. Synthetic and Systems Biotechnology, 2(2017), 13-22. doi: 10.1016/j.synbio.2016.12.001.

Sengkhamparn, N., & Phonkerd, N. (2014). Effect of heat treatment on free radical scavenging capasities and phenolic compound in Tylopillus alboater wild edible mushrooms. Chiang Mai Journal of Science, 41(5), 1241-1249.

Sharpe, E., Farragher-Gnadt, A. P., Igbanugo, M., Huber, T., Michelotti, J. C., Milenkowic, A., … Bou-Abdallah, P. (2021). Comparison of antioxidant activity and extraction techniques for commercially and laboratory prepared extracts from six mushroom species. Journal of Agriculture and Food Research, 4(2021), 100130. doi: 10.1016/j.jafr.2021.100130.

Shinoda, K., Konno, N., & Suzuki, T. (2020). Non-destructive analysis of the moisture content in shiitake mushrooms (Lentinula edodes) using near-infrared imaging at 1450 nm. Mycoscience, 61(2020), 235-239. doi: 10.1016/j.myc.2020.04.005.

Srikram, A., & Supapvanich, S. (2016). Proximate compositions and bioactive compounds of edible wild and cultivated mushrooms from Northeast Thailand. Agriculture and Natural Resources, 50(2016), 432-436. doi: 10.1016/j.anres.2016.08.001.

Sudarmadji, S., Haryono, B., & Suhardi. (1984). Prosedur analisa untuk bahan makanan dan pertanian. Yogyakarta: Liberty.

Sulistiany, H., Sudirman, L. I., Dharmaputra, O. S. (2016). Production of fruiting body and antioxidant activity of wild Pleurotus. HAYATI Journal of Biosciences, 23(4), 191-195. doi: 10.1016/j.hjb.2016.07.003.

Tangkanakul, P., Auttaviboonkul, P., Niyomwit, B., Lowvitoon, N., Charoenthamawat, P., & Trakoontivakorn, G. (2009). Antioxidant capacity, total phenolic content and nutritional composition of Asian foods after thermal processing. International Food Research Journal, 16(4), 571-580.

Thatoi, H., & Singdevsachan, S. K. (2014). Diversity, nutritional composition and medicinal potential of Indian mushroos: a review. African Journal of Biotechnology, 13(4), 523-545. doi: 10.5897/AJB2013.13446.

Van de Peppel, L. J. J., & Aanen, D. K. (2020). High diversity and low host-specificity of Termitomyces symbionts cultivated by Microtermes spp. indicate frequent symbiont exchange. Fungal Ecology, 45(2020), 1-7. doi: 10.1016/j.funeco.2020.100917.

Vieira, V., Barros, L., Martins, A., & Ferreira, I. C. F. R. (2014). Expanding current knowledge on the chemical composition and antioxidant activity of the genus Lactarius. Molecules, 19(2014), 20650-20663. doi: 10.3390/molecules191220650.

Woldegiorgis, A., Abate, D., Haki, G. D., & Ziegler, G. R. (2014). Antioxidant property of edible mushrooms collected from Ethiopia. Food Chemistry, 157(2014), 30-36. doi: 10.1016/j.foodchem.2014.02.014.

Wu, X., Guan, W., Yan, R., Lei, J., Xu, L., & Wang, Z. (2016). Effects of UV-C on antioxidant activity, total phenolics and main phenolic compounds of the melanin biosynthesis pathway in different tissues of button mushroom. Postharvest Biology and Technology, 118(2016), 51-58. doi: 10.1016/j.postharvbio.2016.03.017.

Yang, J., Huang, Y., Xu, H., Gu, D., Xu, F., Tang, J., … Yang, Y. (2020). Optimization of fungi co-fermentation for improving anthraquinone contents and antioxidant activity using artificial neural networks. Food Chemistry, 313(2020), 126138. doi: 10.1016/j.foodchem.2019.126138.

Zhang, N., Chen, H., Zhang, Y., Xing, L., Li, S., Wang, X., & Sun, Z. (2015). Chemical composition and antioxidant properties of five edible Hymenomycetes mushrooms. International Journal of Food Science Technology, 50(2), 465-471. doi: 10.1111/ijfs.12642.

Zhao, Y., Gao, R., Zhuang, W., Xiao, J., Zheng, B., & Tian, Y. (2020). Combined single-stage tempering and microwave vacuum drying of the edible mushroom Agrocybe chaxingu: Effects on drying characteristics and physical-chemical qualities. LWT-Food Science and Technology, 128(2020), 1-9. doi: 10.1016/j.lwt.2020.109372.




DOI: https://doi.org/10.15408/kauniyah.v15i2.18230 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120