Efek Toksisitas Subakut Serbuk Biji Pepaya (Carica papaya) Varietas ‘Bangkok’ dan ‘California’ Pada Mencit Jantan (Mus musculus) Galur Swiss Webster

Nani Radiastuti, Indri Garnasih, Sena Yunia Saputri

Abstract


Abstrak

Biji pepaya memiliki rasa yang pahit, pedas, dan beraroma menyengat sehingga kurang diminati untuk diolah. Bahan tersebut belum banyak dimanfaatkan secara optimal, padahal potensinya sangat besar untuk dijadikan sebagai bahan pengawet makanan. Oleh karena itu, perlu dilakukan penelitian untuk menguji keamanannya. Penelitian ini bertujuan untuk membandingkan efek toksisitas subakut serbuk biji pepaya ‘Bangkok’ dan ‘California’ secara in vivo pada mencit jantan galur Swiss Webster. Penelitian dilakukan dengan metode eksperimen, terdiri dari empat perlakuan serbuk biji pepaya yang dilarutkan dengan CMC 1% (dosis 0, 400, 600, dan 800 mg/kg BB). Semua dosis diberikan pada mencit secara gavage dengan volume 0,1 mL/10 g BB. Perlakuan diberikan setiap hari selama 28 hari. Pada hari ke-29, darah mencit diambil melalui retroorbital untuk diuji SGPT dan SGOT. Perlakuan dosis serbuk biji pepaya tidak berpengaruh terhadap berat badan, kondisi fisik, dan organ visceral mencit, namun meningkatkan kadar SGPT dan SGOT. Peningkatan tersebut masih di bawah ambang batas normal SGOT (70–400 U/L) dan SGPT (25–200 U/L).

Abstract

Papaya seeds have a bitter, spicy, and pungent aroma so they are less desirable for processing. The material has not been used optimally, even though its potential is to be used as a food preservative. Therefore, research is needed to examine its safety. This study aimed to compare the effect of subacute toxicity of 'Bangkok' and 'California' papaya seed powder in vivo on male mice of Swiss Webster strain. The research was conducted using an experimental method, consisting of four treatments of papaya seed powder dissolved in 1% CMC (dose 0, 400, 600, and 800 mg/kg BW). All doses were given to mice by gavage with a volume of 0.1 mL/10 g BW. The treatment was given every day for 28 days. On day 29, the blood of mice was taken retroorbitally to be tested for SGPT and SGOT. The dose of papaya seed powder treatment showed no effect on body weight, physical condition, and visceral organs of mice, but increased levels of SGPT and SGOT. The increase was still below the normal threshold for SGOT (70400 U/L) and SGPT (25200 U/L).


Keywords


Biji pepaya; SGOT; SGPT; Toksisitas subakut; papaya seeds; SGOT; SGPT Subacute toxicity

Full Text:

PDF

References


Algar, D., & Burrows, N. D. (2004). Feral cat control research: Western shield review February 2003. Conservation Science Western Australia, 5(2), 131-163.

Altmann, J. (1974). Observational study of behavior: Sampling methods. Behaviour, 49(3), 227-267.

Baldwin, J. A. (1975). Notes and speculations on the domestication of the cat in Egypt. Anthropos, 70, 428-448.

Bradshaw, J. W. S. (2006). The evolutionary basis for the feeding behavior of domestic dogs (Canis familiaris) and cats (Felis catus). Journal Nutrition, 136, 1-5. doi: 10.1093/jn/136.7.1927S.

Brickner-Braun, I., Geffen, E., & Yom-Tov, Y. (2007). The domestic cat as a predator of Israeli wildlife, Israel. Journal of Ecology & Evolution, 53, 129-142. doi: 10.1560/IJEE.53.2.129.

Centonze, L. A., & Levy, J. K. (2002). Characteristics of free-roaming cats and their caretakers. Journal of the American Veterinary Medical Association, 220, 1627-1633. doi: 10.2460/javma.2002.220.1627.

Chomel, B. B., & Kasten, R. W. (2010). Bartonellosis, an increasingly recognized zoonosis. Journal of Applied Microbiology, 109, 743-750. doi: 10.1111/j.1365-2672.2010.04679.x.

Cove, M. V., Gardner, B., Simons, T. R., Kays R., & O’Connell A. F. (2017). Free-ranging domestic cats (Felis catus) on public lands: Estimating density, activity, and diet in the Florida Keys. Biological Invasions, 20(2), 333-344. doi: 10.1007/s10530-017-1534-x.

Crawford, H. M., Calver, M. C., & Fleming, P. A. (2019). Subsidised by junk foods: Factors influencing body condition in stray cats (Felis catus). Journal of Urban Ecology, 6, 1-17. doi: 10.1093/jue/juaa004.

Dias, R. A., Abrahao, C. R., Micheletti, T., Mangini, P. R., Gasparoto, V. P. O., Pena, H. F. J., … Silva, J. C. R. (2017). Prospects for domestic and feral cat management on an inhabited tropical island. Biological Invasions, 19, 2339-2353. doi: 10.1007/s10530-017-1446-9.

Driscoll, C. A., Macdonald, D. W., & O’Brien S. J. (2009). From wild animals to domestic pets, an evolutionary view of domestication. Light Evolution, 3, 89-109. doi: 10.17226/12692.

Finkler, H., Hatna, E., & Terkel, J. (2011). The influence of neighbourhood socio-demographic factors on densities of free-roaming cat populations in an urban ecosystem in Israel. Wildlife Research, 38, 235-243. doi: 10.1071/WR10215.

Gunther, I., Raz, T., Zor, Y. E., Bachowski, Y., & Klement, E. (2016). Feeders of free-roaming cats: Personal characteristics, feeding practices and data on cat health and welfare in an urban setting of Israel. Frontiers in Veterinary Science, 3(21), 1-10. doi: 10.3389/fvets.2016.00021.

Hand, A. (2019). Estimating feral cat densities using distance sampling in an urban environment. Ecology and Evolution, 9(5), 2699-2705. doi: 10.1002/ece3.4938.

Hwang, J., Gottdenker, N. L., Oh, D., Nam, H., Lee, H., & Chun, M. (2018). Disentangling the link between supplemental feeding, population density, and the prevalence of pathogens in urban stray cats. PeerJ, 6(e4988), 1-27. doi: 10.7717/peerj.4988.

Legge, S., Murphy, B. P., McGregor, H., Woinarski, J. C. Z., Augusteyn, J., Ballard, G., … Zewe F. (2017). Enumerating a continental-scale threat: How many feral cats are in Australia?. Biological Conservation, 206, 293-303. doi:

1016/j.biocon.2016.11.032.

Levy, J. K., & Crawford, P. C. (2004). Humane strategies for controlling feral cat populations. Journal of the American Veterinary Medical Association, 225(9), 1354-1360. doi: 10.2460/javma.2004.225.1354.

Little, S. E. (2012). The cat: Clinical medicine and management. Saint Louis: W. B. Saunders.

Lowe, S. E., & Bradshaw, J. W. S. (2001). Ontogeny of individuality in the domestic cat in the home environment. Animal Behaviour, 61, 231-237. doi: 10.1006/anbe.2000.1545.

McCarthy, R. J., Levine, S. H., & Reed, J. M. (2013). Estimation of effectiveness of three methods of feral cat population control by use of a simulation model. Journal of the American Veterinary Medical Association, 243(4), 502-511. doi: 10.2460/javma.243.4.502.

Molsher, R., Newsome, A., & Dickman, C. (1999). Feeding ecology and population dynamics of the heral cat (Felis catus) in relation to the availability of prey in central-eastern New South Wales. Wildlife Research, 26, 593-607. doi: 10.1071/WR98058.

Nealma, S., Dwinata, I. M., & Oka, I. B. M. (2013). Prevalensi infeksi cacing Toxocara cati pada kucing lokal di Wilayah Denpasar. Indonesia Medicus Veterinus 2013, 2(4), 428 - 436.

Scott, D. W., & Horn, R. T. (1987). Zoonotic dermatoses of dogs and cats. Veterinary Clinics of North America: Small Animal Practice, 17(1), 117-144. doi: 10.1016/s0195-5616(87)50609-x.

Serpell, J. A. (2014). The domestic cat: The biology of its behaviour. Cambridge: Cambridge University Press.

Shepherdson, D. J., Caristead, K., Mellen, J. D., & Seidensticker, J. (1993). The influence of food presentation on the behavior of small cats in confined environments. Zoo Biology, 12, 203-216. doi: 10.1002/zoo.1430120206.

Slater, M. R. (2004). Understanding issues and solutons for unowned, free-roaming cat populations. Journal of the American Veterinary Medical Association, 225 (9), 1350-1354. doi: 10.2460/javma.2004.225.1350.1.

Stella, J., Croney, C., & Buffington, T. (2014). Environmental factors that affect the behaviour and welfare of domestic cats (Felis silvestris catus) housed in cages. Applied Animal Behaviour Science, 160, 94-105. doi: 10.1016/j.applanim.2014.08.006.

Swarbrick, H., & Rand, J. (2018). Application of a protocol based on trap-neuter-return (TNR) to manage unowned urban cats on an Australian University Campus. Animals, 8(5), 77-99. doi: 10.3390/ani8050077.

Taetzsch, S. J., Bertke, A. S., & Gruszynski, K. R. (2018). Zoonotic disease transmission associated with feral cats in a metropolitan area: A geospatial analysis. Zoonoses and Public Health, 65(4), 412-419. doi: 10.1111/zph.12449.

Untari, A. A. W. (2019). Perilaku harian kucing domestik (Felis Domesticus L.) non liar pada pola rambut tabby (Skripsi sarjana). Departemen Biologi FMIPA, Institut Pertanian Bogor, Indonesia.

Yamane, A., Ono, Y., & Doi, T. (1994). Home range size and spacing pattern of a feral cat population on a small island. Journal of the Mammalogical Society of Japan, 19(1), 9-20. doi: 10.11238/jmammsocjapan.19.9.




DOI: https://doi.org/10.15408/kauniyah.v14i2.16039 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01  /public/site/images/rachma/logo_sinta_75/public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120