Aktivitas Harian dan Perilaku Makan Kucing Domestik Liar di Lingkungan Kantin IPB

Santi Julianti, Indira Nurul Qomariah, Muhammad Al Anshari, Inas Salimah, Kanthi Arum Widayati



Feral cat merupakan kucing domestik liar yang umumnya hidup berkelompok di sekitar habitat manusia. Kucing domestik liar cenderung memanfaatkan sumber daya antropogenik dibanding mencari makan sendiri. Penelitian ini bertujuan untuk membandingkan serta menganalisis perilaku harian dan aktivitas pencarian makan antar kelompok kucing domestik liar di sekitar dua kantin Kampus Institut Pertanian Bogor (IPB). Metode scan sampling digunakan untuk mengamati aktivitas harian rata-rata dengan interval waktu 10 menit, selanjutnya metode ad libitum sampling untuk melihat perilaku makan dan interaksi antara kucing dengan manusia dalam mendapatkan makanan. Perilaku harian dibagi dalam 3 kategori, yaitu afiliatif, pemeliharaan diri, dan pertemuan negatif. Berdasarkan hasil penelitian, perilaku harian kucing di kedua kantin didominasi oleh perilaku perawatan diri (76,62% dan 65,17%), diikuti oleh perilaku afiliatif (18,06% dan 29,61%) dan perilaku negatif (5,32% dan 5,22%). Tidak terdapat perbedaan signifikan antara perilaku kucing di pagi hari dan siang hari (p-value >0,05). Interaksi antara kucing dan manusia yang memiliki frekuensi tertinggi yaitu perilaku kucing mendekati manusia. Tidak terdapat perbedaan signifikan pada interaksi antara kucing dan manusia di pagi hari dan siang hari (p-value> 0.05).


A feral cat is a wild domestic cat that usually lives in groups around the human habitat. Wild domestic cats tend to utilize anthropogenic resources from humans rather than foraging for themselves. This study aims to compare and analyze the daily behavior and foraging activity of groups of feral cats around the canteens of the IPB University campus. Observation of the cat's daily activity behavior was conducted by the scan sampling method at 10-minute intervals. The ad libitum sampling method was conducted to observe the feeding behavior and the interaction between the cats and humans in getting food. Daily activity behavior is divided into three categories, i.e., affiliative, self-care, and negative encounters. This study showed daily activity of the cats were dominated by self-care (76,62% dan 65,17%), affiliative behavior (18,06% dan 29,61%) and negative encounters (5,32% dan 5,22%). There is no significant difference between the daily activity of the cats in the morning and daytime (p-value >0.05). The interaction between human and the cats were dominated by the behavior of the cats approaching human. There is no significant difference in interactions between humans and cats in the morning and daytime (p-value >0.05).


Interaksi kucing dan manusia; Kucing domestik; Kucing liar; Perilaku makan; Strategi makan; Domestic cat; Feeding behavior; Feeding strategy; Felis catus; Feral cat; Human–cat interaction

Full Text:



Algar, D., & Burrows, N. D. (2004). Feral cat control research: Western shield review February 2003. Conservation Science Western Australia, 5(2), 131-163.

Altmann, J. (1974). Observational study of behavior: Sampling methods. Behaviour, 49(3), 227-267.

Baldwin, J. A. (1975). Notes and speculations on the domestication of the cat in Egypt. Anthropos, 70, 428-448.

Bradshaw, J. W. S. (2006). The evolutionary basis for the feeding behavior of domestic dogs (Canis familiaris) and cats (Felis catus). Journal Nutrition, 136, 1-5. doi: 10.1093/jn/136.7.1927S.

Brickner-Braun, I., Geffen, E., & Yom-Tov, Y. (2007). The domestic cat as a predator of Israeli wildlife, Israel. Journal of Ecology & Evolution, 53, 129-142. doi: 10.1560/IJEE.53.2.129.

Centonze, L. A., & Levy, J. K. (2002). Characteristics of free-roaming cats and their caretakers. Journal of the American Veterinary Medical Association, 220, 1627-1633. doi: 10.2460/javma.2002.220.1627.

Chomel, B. B., & Kasten, R. W. (2010). Bartonellosis, an increasingly recognized zoonosis. Journal of Applied Microbiology, 109, 743-750. doi: 10.1111/j.1365-2672.2010.04679.x.

Cove, M. V., Gardner, B., Simons, T. R., Kays R., & O’Connell A. F. (2017). Free-ranging domestic cats (Felis catus) on public lands: Estimating density, activity, and diet in the Florida Keys. Biological Invasions, 20(2), 333-344. doi: 10.1007/s10530-017-1534-x.

Crawford, H. M., Calver, M. C., & Fleming, P. A. (2019). Subsidised by junk foods: Factors influencing body condition in stray cats (Felis catus). Journal of Urban Ecology, 6, 1-17. doi: 10.1093/jue/juaa004.

Dias, R. A., Abrahao, C. R., Micheletti, T., Mangini, P. R., Gasparoto, V. P. O., Pena, H. F. J., … Silva, J. C. R. (2017). Prospects for domestic and feral cat management on an inhabited tropical island. Biological Invasions, 19, 2339-2353. doi: 10.1007/s10530-017-1446-9.

Driscoll, C. A., Macdonald, D. W., & O’Brien S. J. (2009). From wild animals to domestic pets, an evolutionary view of domestication. Light Evolution, 3, 89-109. doi: 10.17226/12692.

Finkler, H., Hatna, E., & Terkel, J. (2011). The influence of neighbourhood socio-demographic factors on densities of free-roaming cat populations in an urban ecosystem in Israel. Wildlife Research, 38, 235-243. doi: 10.1071/WR10215.

Gunther, I., Raz, T., Zor, Y. E., Bachowski, Y., & Klement, E. (2016). Feeders of free-roaming cats: Personal characteristics, feeding practices and data on cat health and welfare in an urban setting of Israel. Frontiers in Veterinary Science, 3(21), 1-10. doi: 10.3389/fvets.2016.00021.

Hand, A. (2019). Estimating feral cat densities using distance sampling in an urban environment. Ecology and Evolution, 9(5), 2699-2705. doi: 10.1002/ece3.4938.

Hwang, J., Gottdenker, N. L., Oh, D., Nam, H., Lee, H., & Chun, M. (2018). Disentangling the link between supplemental feeding, population density, and the prevalence of pathogens in urban stray cats. PeerJ, 6(e4988), 1-27. doi: 10.7717/peerj.4988.

Legge, S., Murphy, B. P., McGregor, H., Woinarski, J. C. Z., Augusteyn, J., Ballard, G., … Zewe F. (2017). Enumerating a continental-scale threat: How many feral cats are in Australia?. Biological Conservation, 206, 293-303. doi:


Levy, J. K., & Crawford, P. C. (2004). Humane strategies for controlling feral cat populations. Journal of the American Veterinary Medical Association, 225(9), 1354-1360. doi: 10.2460/javma.2004.225.1354.

Little, S. E. (2012). The cat: Clinical medicine and management. Saint Louis: W. B. Saunders.

Lowe, S. E., & Bradshaw, J. W. S. (2001). Ontogeny of individuality in the domestic cat in the home environment. Animal Behaviour, 61, 231-237. doi: 10.1006/anbe.2000.1545.

McCarthy, R. J., Levine, S. H., & Reed, J. M. (2013). Estimation of effectiveness of three methods of feral cat population control by use of a simulation model. Journal of the American Veterinary Medical Association, 243(4), 502-511. doi: 10.2460/javma.243.4.502.

Molsher, R., Newsome, A., & Dickman, C. (1999). Feeding ecology and population dynamics of the heral cat (Felis catus) in relation to the availability of prey in central-eastern New South Wales. Wildlife Research, 26, 593-607. doi: 10.1071/WR98058.

Nealma, S., Dwinata, I. M., & Oka, I. B. M. (2013). Prevalensi infeksi cacing Toxocara cati pada kucing lokal di Wilayah Denpasar. Indonesia Medicus Veterinus 2013, 2(4), 428 - 436.

Scott, D. W., & Horn, R. T. (1987). Zoonotic dermatoses of dogs and cats. Veterinary Clinics of North America: Small Animal Practice, 17(1), 117-144. doi: 10.1016/s0195-5616(87)50609-x.

Serpell, J. A. (2014). The domestic cat: The biology of its behaviour. Cambridge: Cambridge University Press.

Shepherdson, D. J., Caristead, K., Mellen, J. D., & Seidensticker, J. (1993). The influence of food presentation on the behavior of small cats in confined environments. Zoo Biology, 12, 203-216. doi: 10.1002/zoo.1430120206.

Slater, M. R. (2004). Understanding issues and solutons for unowned, free-roaming cat populations. Journal of the American Veterinary Medical Association, 225 (9), 1350-1354. doi: 10.2460/javma.2004.225.1350.1.

Stella, J., Croney, C., & Buffington, T. (2014). Environmental factors that affect the behaviour and welfare of domestic cats (Felis silvestris catus) housed in cages. Applied Animal Behaviour Science, 160, 94-105. doi: 10.1016/j.applanim.2014.08.006.

Swarbrick, H., & Rand, J. (2018). Application of a protocol based on trap-neuter-return (TNR) to manage unowned urban cats on an Australian University Campus. Animals, 8(5), 77-99. doi: 10.3390/ani8050077.

Taetzsch, S. J., Bertke, A. S., & Gruszynski, K. R. (2018). Zoonotic disease transmission associated with feral cats in a metropolitan area: A geospatial analysis. Zoonoses and Public Health, 65(4), 412-419. doi: 10.1111/zph.12449.

Untari, A. A. W. (2019). Perilaku harian kucing domestik (Felis Domesticus L.) non liar pada pola rambut tabby (Skripsi sarjana). Departemen Biologi FMIPA, Institut Pertanian Bogor, Indonesia.

Yamane, A., Ono, Y., & Doi, T. (1994). Home range size and spacing pattern of a feral cat population on a small island. Journal of the Mammalogical Society of Japan, 19(1), 9-20. doi: 10.11238/jmammsocjapan.19.9.

DOI: https://doi.org/10.15408/kauniyah.v14i2.15730 Abstract - 0 PDF - 0


  • There are currently no refbacks.

This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01  /public/site/images/rachma/logo_sinta_75/public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120