Assesmen Risiko Ekologi (ARE) Perikanan Tuna Pole and Line di Flores dan Tonda di Flores dan Pelabuhanratu

Yonvitner Yonvitner, Mennofatria Boer, Rahmat Kurnia, Destilawati Destilawati

Abstract


Abstrak

Kegiatan perikanan tuna dengan penggunaan alat tangkap pole and line dan tonda berisiko menyebabkan kerentanan (risiko ekologi) yang dapat menganggu keberlanjutan stok tuna. Untuk itu dilakukan penelitian menilai kerentanan menjadi parameter risiko ekologi menggunakan pendekatan analisis productivity dan susceptability analysis (PSA) pada jenis ikan tuna sirip kuning (ukuran baby tuna), tongkol, lemadang, dan cakalang. Pengumpulan data biologi dan ekologi dari alat tangkap pole and line dilakukan di Flores dan pancing tonda di Pelabuhanratu. Selanjutnya, analisis laboratorium dilakukan pada Laboratorium Biologi Perikanan, Departemen Manajemen Sumberdaya Perairan, Fakultas Perikanan dan Ilmu Kelautan IPB. Hasil analisis produktivitas dan susceptabilitas alat pole and line untuk ikan baby tuna 1,42 dan ikan tongkol 1,98. Nilai ini menunjukkan tingkat kerentanan dan risiko ekologi pada ikan tongkol tergolong tinggi dan ikan baby tuna masih rendah. Analisis PSA dari alat pancing tonda pada ikan baby tuna diperoleh sebesar 2,34; ikan lemadang sebesar 2,34; dan ikan cakalang 2,18. Nilai ini menunjukkan bahwa kerentanan tinggi dan risiko ekologi pada ketiga jenis ikan tersebut juga tinggi karena penggunaan pancing tonda. Penggunaan alat tangkap pole and line serta pancing tonda pada perikanan tuna menyebabkan tingginya risiko pada ikan tuna sirip kuning (ukuran baby tuna), lemadang, cakalang, dan tongkol.

 Abstract

Tuna fishery activities using pole and line fishing gear and tonda have the risk of causing vulnerability (ecological risk) which can disrupt the sustainability of tuna stocks. For this reason, a study was conducted to assess vulnerability which is a parameter of ecological risk using the productivity and susceptibility analysis (PSA) approach to the fish’s species are albacares (baby tuna), mackerel, lemadang, and skipjack. Biological and ecological data collection from pole and line fishing gear was carried out in Flores and trolling and tonda in Pelabuhanratu. Furthermore, laboratory analysis was carried out at the fisheries biology laboratory, Department of Aquatic Resources Management, Faculty of Fisheries and Marine Sciences IPB. The results of productivity and susceptibility analysis of the pole and line for baby tuna and Euthynnus are 1.42 and 1.98.  This value shows the level of vulnerability where the ecological risk of tuna is high and baby tuna also low. The PSA analysis of the tonda for baby tuna was 2.34; lemadang was 2.34; and skipjack was 2.18. This value indicates that the high vulnerability and ecological risk of the three species of fish are also high due to the use of tonda. The use of pole and line fishing gear and tonda lines in tuna fisheries causes a high risk for albacares (baby tuna), mackerel, lemadang, and skipjack.


Keywords


Pole and line; Risk; Sustainability; Tonda; Vulnerability; Kerentanan; Keberlanjutan; Risiko

Full Text:

PDF

References


Ardelia, Vera., Boer, M., & Yonvitner. (2017). Precautionary approach dalam pengelolaan sumberdaya ikan tongkol (Euthynnus affinis, Cantor 1849) di Perairan Selat Sunda. Tropical Fisheries Management Journal, 1(1), 33-40.

Evans, R. H., McLain, D. R., & Bauer, R. A. (1981). Atlantic skipjack tuna: Influences of mean environmental conditions on their vulnerability to surface fishing gear. Marine Fisheries Review, 43(6), 1-11.

Effendie, M. I. (2002). Biologi perikanan. Yogyakarta: Yayasan Pustaka Nusatama.

Fishbase. (2020). Eunthynnus affinis (Cantor, 1849) Kawakawa. Retrieved from https://www.fishbase.se/summary/96.

Fishbase. (2020). Thunnus albacares (Bonnaterre, 1788) yellowfin tuna. Retrieved from https://www.fishbase.se/summary/thunnus-albacares.html.

Fujita, R., Thornhill, D. J., Karr, K., Cooper, C. H., & Dee, L. E. (2014). Assessing and managing data‐limited ornamental fisheries in coral reefs. Fish and Fisheries, 15(4), 661-675.

Gillett, R. (2011). Replacing purse seining with pole-and-line fishing in the Central and Western Pacific: Some aspects of the baitfish requirements. Marine Policy, 35(2), 148-154.

Gallagher, A. J., Orbesen, E. S., Hammerschlag, N., & Serafy, J. E. (2014). Vulnerability of oceanic sharks as pelagic tonda bycatch. Global Ecology and Conservation, 1, 50-59.

Grantham, H. S., Petersen, S. L., & Possingham, H. P. (2008). Reducing bycatch in the South African pelagic tonda fishery: The utility of different approaches to fisheries closures. Endangered Species Research, 5(2-3), 291-299.

Hordyk, A. R., & Carruthers, T. R. (2018). A quantitative evaluation of a qualitative risk assessment framework: Examining the assumptions and predictions of the productivity susceptibility analysis (PSA). PloS one, 13(6), e0198298.

Kementerian Kelautan dan Perikanan (KKP). (2020). Laporan ekspor perikanan tuna Indonesia. Jakarta: Ditjen Tangkap KKP RI.

Lahodey, P. I., Senina, R., & Murtugudde. (2008). A spatial ecosystem and populations dynamics model (SEAPODYM)-modeling of tuna and tuna-like populations. Oceanography, 78, 304-318.

Lewison, R. L., & Crowder, L. B. (2007). Putting tonda bycatch of sea turtles into perspective. Conservation biology, 21(1), 79-86.

Lucena-Frédou, F., Kell, L., Frédou, T., Gaertner, D., Potier, M., Bach, P., ... & Ménard, F. (2017). Vulnerability of teleosts caught by the pelagic tuna longline fleets in South Atlantic and Western Indian Oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 140, 230-241.

Mayer, F. P., & Andrade, H. A. (2008). Size of yellowfin tuna (Thunnus albacares) caught by pole-and-line fleet in the Southwestern Atlantic Ocean. Brazilian Journal of Aquatic Science and Technology, 12(1), 59-62.

McCully, S. R., Scott, F., Ellis, J. R., & Pilling, G. M. (2013). Productivity and susceptibility analysis: Application and suitability for data poor assessment of elasmobranchs in Northern European seas. Collective Volume of Scientific Papers, 69(4), 1679-98.

Pauly, D. (1984). Fish population dynamics in tropical waters: A manual for use with programmable calculators (vol 8). Manila: The International Center for Living Aquatic Resources Management.

Patrick, W. S., Spencer, P., Link, J., Cope, J., Field, J., Kobayashi, D., & Bigelow, K. (2009). Using productivity and susceptibility indices to assess the vulnerability of United States fish stocks to overfishing. Fishery Bulletin, 108(3), 305-322.

Piovano, S., Clò, S., & Giacoma, C. (2010). Reducing tonda bycatch: The larger the hook, the fewer the stingrays. Biological Conservation, 143(1), 261-264.

Rawlinson, N. J., Prisantoso, B. I., Milton, D. A., & Gafa, B. (2017). Change in fishing efficiency of the pole-and-line skipjack tuna fleet based Sorong Irian Jaya, Indonesia. Indonesian Fisheries Research Journal, 4(2), 25-40.

Sibert, J., & Hampton, J. (2003). Mobility of tropical tunas and the implications for fisheries management. Marine Policy, 27(1), 87-95.

Sivasubramaniam, K. (1972). Skipjack tuna (K. pelamis L.) Resource in the seas around Ceylon. Bulletin of The Fisheries Research Station, Sri Lanka (Ceylon), 23(1-2), 19-28.

Sparre, P., & Venema, S. C. (1999). Introduksi pengkajian stok ikan tropis buku 1: Manual. Jakarta: Pusat Penelitian dan Pengembangan Perikanan, Badan Penelitian dan Pengembangan Pertanian.

Wijaya, H. A. N. D. I. (2012). Hasil tangkapan madidihang (Thunnus albacares, Bonnattere 17880) dengan alat tangkap pancing tonda dan pengelolaannya di Pelabuhan Perikanan Nusantara Palabuhan Ratu Sukabumi. FMIPA UI. Jakarta, 1(2), 4-7.

Yonvitner, Y., Tamanyira, M., Ridwan, W., Habibi, A., Destilawati, D., & Akmal, S. G. (2018). Kerentanan perikanan bycatcth tuna dari Samudera Hindia: Evidance dari Pelabuhan perikanan Pelabuhanratu. Tropical Fisheries Management Journal, 2(1), 1-10.




DOI: https://doi.org/10.15408/kauniyah.v16i1.14475 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120