PENGARUH POLYETHYLENE GLYCOL (PEG) TERHADAP KADAR KUERSETIN KULTUR KALUS Chrysanthemum morifolium Ramat PADA KONDISI PENCAHAYAAN BERBEDA

Tia Setiawati, Syifa Fauzia Zazuli, Annisa Annisa, Mohamad Nurzaman, Budi Irawan

Abstract


Abstrak

Krisan (Chrysanthemum morifolium Ramat) mengandung senyawa kuersetin dengan efek farmakologi yang sangat luas. Penambahan polyethilene glycol (PEG) dapat dimanfaatkan untuk meningkatkan produksi metabolit sekunder secara in vitro. Penelitian ini bertujuan untuk mengetahui pengaruh PEG terhadap pertumbuhan kalus krisan dan kadar kuersetin 3-O-rhamnosida pada pencahayaan yang berbeda. Penelitian menggunakan Rancangan Acak Lengkap (RAL). Eksplan kalus berumur 45 hari setelah tanam (HST) disubkultur pada media MS + 4 ppm 2,4-D dengan penambahan PEG dalam lima taraf konsentrasi yaitu 0, 10, 20, 30, dan 40 ppm. Kultur diinkubasi pada kondisi gelap dan terang. Parameter yang diamati adalah warna, tekstur, ukuran, berat basah, dan berat kering kalus serta kadar kuersetin 3-O-rhamnosida. Data kuantitatif dianalisis menggunakan Analisis Varians dan Uji Jarak Berganda Duncan (α 5%), sedangkan data kualitatif dianalisis secara deskriptif. Hasil penelitian menunjukkan bahwa kalus pada kondisi terang berwarna cokelat dan cokelat kehijauan, sedangkan pada kondisi gelap berwarna putih kecokelatan. Perlakuan 10 ppm PEG menghasilkan berat basah dan berat kering kalus tertinggi baik pada kondisi terang maupun gelap berturut-turut 1,97 g dan 2,92 g; 0,94 g dan 1,09 g. Kadar kuersetin 3-O-rhamnosida tertinggi pada kondisi gelap dan terang terdapat pada perlakuan 10 ppm PEG berturut-turut  1,72 µg/g berat kering (BK) dan 2,59 µg/g BK.

Abstract

Chrysanthemum morifolium Ramat. contains quercetin with very broad pharmacological effects. The addition of PEG can be used to increase the production of secondary metabolites using in vitro method. This study aimed to determine the effect of PEG on the growth of Chrysanthemum callus and quercetin 3-O-rhamnoside content in different lighting conditions. The experimental design used was a Completely Randomized Design. After 45 days, callus were subcultured on MS medium + 4 ppm 2,4-D which PEG was added in five concentration levels (0, 10, 20, 30, and 40 ppm). Culture was incubated in dark and light conditions. Parameters observed were color, texture, size, wet weight and dry weight of callus, also quercetin 3-O-rhamnoside levels. Quantitative data was analyzed using Analysis of Variance and Duncan's Multiple Distance (α 5%). Qualitative data was analyzed descriptively. The results showed that in light condition, the callus has brown and greenish brown color, whereas in dark, it has brownish white color. The 10 ppm PEG treatment produced the highest fresh weight and dry weight in both light and dark conditions of 1.97 g and 2.92 g, 0.94 g and 1.09 g, respectively.The highest quercetin 3-O-rhamnoside content  in dark and light conditions were founded in 10 ppm PEG treatment of 1.72 µg/g dry weight (DW) and 2.59 µg/g DW.


Keywords


Cahaya; Kalus; Krisan; Kuersetin; PEG; Callus; Chrysanthemum; Light; Quercetin

Full Text:

PDF

References


Ali, H. T. S., & Asi, M. R. (2012). Appraisal of an important flavonoid, quercetin, in callus cultures of Citrullus colocynthis. International Journal of Agriculture Biology, 14(4), 528-532.

Al-Oubaidi, H. K. M., & Al-Sowaidi, W. M. M. (2015). Effect of poly ethylene glycol (PEG) on (fenoles compounds) production of Oleaeuropaea L. from callus in vitro. International Journal of Preclinical & Pharmaceutical Research, 6(1), 16-19.

Anasori P., & Asghari, G. (2008). Effects of light and differentiation on gingerol and zingiberene production in callus culture of Zingiber officinale Rosc. Research in Pharmaceutical Sciences, 3(1), 59-63.

Angelova, Z., Georgiev, S., & Roos, W. (2006). Elicitation of plants. Biotechnology & Biotechnology Equipment, 20(2), 72-83.

Ariani, R., Anggraito, Y. U., & Rahayu, E. S. (2016). Respon pembentukan kalus koro benguk (Mucuna pruriens L.) pada berbagai konsentrasi 2,4-D dan BAP. Jurnal MIPA UNNES , 39(1), 20-28.

Ariany, S. P., Sahiri, N., & Abdul, S. (2013). Pengaruh kuantitas cahaya terhadap pertumbuhan dan kadar antosianin daun dewa (Gynura pseudochina (L.) DC) secara in vitro. Agrotekbis, 1(5), 413-420.

Azhar, N., Hussain, B., Ashraf, M. Y., & Abbasi, K. Y. (2011). Water stress mediated changes in growth, physiology and secondary metabolites of desi ajwain (Trachyspermum ammiI L.). Pakistan Journal of Botany 43, 15-19.

Behbahani, M., Mehrnaz, S., & Mohamad, J. H. (2011). Optimization of callus and cell suspension cultures of Barringtonia racemosa (Lecythidaceae family) for lycopene production. Science Agriculture, 68(1), 69-76.

Chattopadhyay, S., Sunita, F., Ashok, K. S., & Virendra, S. (2002). Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnology Bioprocess Engineering, 7(3), 138-149.

Gomes, I. B. S., Porto, M. L., Santos, M. C., Campagnaro, B. P., Pereira, T. M. C., Meyrelles, S. S., & Vasquez, E. C. (2014). Renoprotective, anti-oxidative and antiapoptotic effects of oral low-dose quercetin in the C57BL/6J model of diabetic nephropathy. Lipids in Health and Disease, 13(1), 184.doi: 10.1186/1476-511X-13-184.

Gupta, N., Bains, N. S., & Thind, S. K. (2014). In vitro callus approach in selection for drought tolerance in bread wheat and its relation to yield performance under field drought conditions. Journal of Cell and Tissue Research, 14(2), 4315-4321.

Gupta, P., Sharma, S., & Saxena, S. (2015). Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol. Application Biochemistry Biotechnology, 176(3), 863-874. doi: 10.1007/s12010-015-1616-0.

Guo, R., Hao, W. P., Gong, D. Z., Zhong, X. L. & Gu, F. X. (2013). Effects of water stress on germination and growth of wheat, photosynthetic efficiency and accumulation of metabolites. In M.C. Soriano (Eds.), Soil processes and current trends in quality assessment (pp. 367-380), London, UK: InTech Publisher.

Hao, G., Du, X., Zhao, F., Shi, R., & Wang, J. (2009). Role of nitric oxide in UV-B-induced activation of PAL and stimulation of flavonoid biosynthesis in Ginkgo biloba callus. Plant Cell Tissue Organ Culture, 97(2), 175-185.

Hendaryono, D. P. S., & Wijayani. (1994) Teknik kultur jaringan dan petunjuk: Perbanyakan tanaman secara vegetatif modern. Yogyakarta: Kanisius.

Humaira, A., & Amien, S. (2019). Induksi kalus lima kultivar seledri (Apium graveolens L.) dengan sukrosa dan berbagai konsentrasi maltose. Agrin: Jurnal Penelitian Pertanian, 23(1), 1-11.

Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Somasundaram, R., & Panneerselvam, R. (2009). Drought stress in plants: A review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology, 11(1), 100-105.

Janarthanam, B., Gopalakrishnan, M., & Sekar, T. (2010). Secondary metabolite production in callus cultures of Stevia rebaudiana Bertoni. Bangladesh Journal of Scientific Industrial Research, 45(3), 243-248.

Kacem, N. S., Delporte, F., Muhovski, Y., Djekoun, A., & Wattilon, B. (2017). In vitro screening of durum wheat against water-stress mediated through polyethylene glygol. Journal of Genetic Engineering and Biotechnology, 15(1), 239-247.

Kawazoe, S., Kobayashi, S., Mizukami, H., & Ohashi, H. (1989). Cultivation and breeding of Uncaria rhynchophylla (Miq.) III. Effect of shading rate on growth, hook yield and alkaloid content. Japanese Journal Pharmacognosy 43, 104-108.

Kehie, M., Kumaria, S., & Tandon, P. (2014). Osmotic stress induced capsaicin production in suspension cultures of Capsicum chinense Jacq.cv. Naga King Chili. Bioprocess Biosystem Engineering, 37(6), 1055-1063. doi:10.1007/s00449-013-1076-2.

Kintzios, S., Papanastasiou, I., Tourgelis, P., Papastellatos, C., Georgopoulos, V., & Drossopoulos, J. (2002). The effects of light on callus growth and somatic embryogenesis from Lavandula vera and Teucrium chamaedrys: A preliminary study. Journal of Medicinal Plants 2, 223-227.

Kusbiantoro, D., & Purwaningrum, Y. (2018) Pemanfaatan kadar metabolit sekunder pada tanaman kunyit dalam mendukung peningkatan pendapatan masyarakat. Jurnal Kultivasi, 17(1), 544-549.

Manuhara, Y. S. W. (2014). Kapita selekta kultur jaringan tumbuhan. Surabaya: Airlangga University Press.

Moghaddasian, B., Eradatmand, A. D., & Alaghemand, A. (2012). Simultaneous determination of rutin and quercetin in different parts of Capparisspinosa. Bulletin of Environment, Pharmacology and Life Sciences, 2(2), 35-38.

Moitreyee, S., Shrivastava, K., & Singh, S. S. (2013). Effect of culture media and growth hormones on callus induction in Aquilaria malaccensis Lam., a medicinally and commercially important tree species of North East India. Asian Journal of Biological Sciences, 6(2), 96-105.

Nadir, M., Syahrir, R., & Syamsia. (2018). In vitro selection of a drought tolerant callus of dwarf napier grass (Pennisetum purpureum Cv. Mott). IOP Conference Series: Earth and Environmental Science, 156, doi :10.1088/1755-1315/156/1/012024.

Purwaningsih, W., Febri, S., & Kusdianti. (2016). Formation flavonoid secondary metabolites in callus culture of Chrysanthemum cinerariefolium as alternative provision medicine. AIP Conference Proceedings, 1708(1), 030005.

Ramani, S., & Jayabaskaran, C. (2008). Enhanced catharanthine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light. Journal of Molecular Signaling, 3(9). doi:10.1186/1750-2187-3-9.

Rao, S., & Jabeen, F. T. Z. (2013). In vitro selection and characterization of polyethylene glycol (PEG) tolerant callus lines and regeneration of plantlets from the selected callus lines in sugarcane (Saccharum officinarum L.). Physiology and Molecular Biology of Plants, 19(2), 261-268. doi:10.1007/s12298-013-0162-x.

Rao, S., Usha, K., & Arjun. (2015). Production of secondary metabolites from callus cultures of Centella asiatica (L.) urban. Annals of Phytomedicine, 4(1), 74-78.

Sauerwein, M., Wink, M., & Shimomura, K. (1992). Influence of light and phytohormones on alkaloid production in transformed root cultures of Hyoscyamus albus. Journal Plant and Physiology, 140(2), 147-52.

Selmar, D. (2008). Potential of salt and drought stress to increase pharmaceutical significant secondary compounds in plants. Landbauforschung - vTI Agriculture and Forestry Research, 58(1), 139-144.

Seenivasan, A., Gummadi, S. N., Panda, T., & Theodore. T. (2015). Quantification of lovastatin produced by Monascus purpureus. The Open Biotechnology Journal, 9(7), 9-16.

Sharafzadeh, S. (2012) Growth and secondary metabolites of basil, mint and thyme as affected by light. International Journal of Pharma and Bio Sciences, 3(1), 43-46.

Shehab, G. G., Ahmed, O., & El-Beltagi, H. S. (2010). Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 139-148. doi:10.15835/nbha3813627.

Shreedhara, C. S. (2013). Effect of elicitors on the production of hispidulin in the suspension culture of Millingtonia hortensis. International Journal of Multidisciplinary Research and Development Research, 1(12), 63-67.

Smith, A. J., Oertle, J., Warren, D., & Prato, D. (2016). Quercetin: A promising flavonoid with a dynamic ability to treat various diseases, infections, and cancers. Journal of Cancer Therapy, 7(2), 83-95. doi: 10.4236/jct.2016.72010.

Sun, Q. L., Hua, S., Ye, J. H., Zheng, X. Q., & Liang, Y. R. (2010). Flavonoids and volatiles in Chrysanthemum morifolium Ramat flower from Tongxiang County in China. African Journal of Biotechnology, 9(25), 3817-3821.

Rahayu, E. S., Guhardja, E., Ilyas, S., & Sudarsono. (2005). Polietilena glikol (PEG) dalam media in vitro menyebabkan kondisi cekaman yang menghambat tunas kacang tanah (Arachis hypogaea L.). Berkala Penelitian Hayati, 11, 39-48.

Santoso, U. & Nursandi, F. (2001). Kultur Jaringan Tanaman. Malang: Fakultas Pertanian Universitas Brawijaya.

Tabiyeh, D. T., Bernard, F., & Shacker, H. (2006). Investigation of glutathione, salicylic acid and GA3effects on browning in Pistacia vera shoot tips culture. Acta Horticulturae, 726(726), 201-204. doi: 10.17660/ActaHortic.2006.726.31.

Tavakkol, A., Angoshtari, R., & Kalantari, S. (2011). Effects of light and different plant growth regulators on induction of callus growth in rapeseed (Brassicanapus L.) genotypes. Plants Omics Journal, 4(2), 60-67.

Vasconsuelo, A., & Boland, R. (2007). Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Science, 172(5), 861-875.

Vanisree, M., Lee, C. Y., Lo, S. F., Nalawade, S. M., Lin, C. Y., & Tsay, H. S. (2004). Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Botanical Bulletin of Academia Sinica, 45,1-22.

Xie, Y. Y., Yuan, D., Yang, J. Y., Wang, L. H., & Wu, C. F. (2009). Cytotoxic activity of flavonoids from the flowers of Chrysanthemum morifolium on human colon cancer colon 205 cells. Journal of Asian Natural Products Research, 11(9), 771-778.

Yazaki, K., Matsuoka, H., Ujihara, T., & Sato, F. (1999). Shikonin biosynthesis in Lithospermum erythrorhizon: Light-induced negative regulation of secondary metabolism. Plant Biotechnology, 16(5), 335-342.




DOI: https://doi.org/10.15408/kauniyah.v13i1.13688 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120