Bakteri Endofit Tanaman Jeruk Nipis (Citrus aurantifolia) Penghasil Asam Indol Asetat (AIA)

Oktira Roka Aji, Iva Dita Lestari

Abstract


Abstrak

Bakteri endofit hidup dalam suatu tanaman tanpa menyebabkan gangguan bagi tanaman yang berperan penting dalam menstimulasi pertumbuhan tanaman, yaitu dengan memproduksi fitohormon seperti asam absisat, asam indol asetat, dan sitokinin. Penelitian ini bertujuan untuk mengisolasi, menyeleksi, dan mengidentifikasi bakteri endofit yang terdapat pada daun, batang, dan akar tanaman jeruk nipis (Citrus aurantifolia). Isolat bakteri endofit diseleksi berdasarkan kemampuannya dalam menghasilkan asam indol asetat (AIA). Isolat bakteri endofit ditumbuhkan pada media nutrient broth (NB) yang ditambah dengan L-triptofan. Konsentrasi AIA dihitung dengan penambahan reagen salkowski dan diukur menggunakan spektrofotometer pada panjang gelombang 530 nm. Identifikasi bakteri endofit dilakukan dengan analisis uji biokimia. Isolat bakteri endofit yang berhasil diisolasi sebanyak 12 isolat, yaitu 4 isolat dari daun, 4 isolat dari batang, dan 4 isolat dari akar. Hasil pengamatan pada uji AIA menunjukkan bahwa semua isolat bakteri endofit dapat menghasilkan hormon AIA. Isolat yang menghasilkan konsentrasi hormon AIA tertinggi adalah isolat B2 (6,51 ppm). Isolat bakteri yang berhasil diidentifikasi berasal dari genus Enterobacter, Bacillus, Pseudomonas, dan Staphylococcus. Bakteri endofit yang dapat menghasilkan AIA berpotensi dikembangkan sebagai biofertilizer untuk meningkatkan produktivitas tanaman.

 

Abstract

Endophytic bacteria live inside plants without causing disruption to plants and play an important role in stimulating plant growth. This study aims to isolate endophytic bacteria from lime plant (Citrus aurantifolia) and characterize its ability to produce indole acetic acid (IAA). Bacterial isolates were grown on media supplemented with L-tryptophan as IAA precursor. The bacterial supernatant was mixed with salkowski reagents and then measured using a spectrophotometer at 530 nm. Bacterial identification was carried out using biochemical characteristic analysis. A total of 12 endophytic bacterial isolates were successfully isolated from leaves, stem and roots of plants. Quantitative test results showed that all isolates can produce IAA. The highest concentration of IAA was produced by B2 (6.51 ppm). Biochemical analysis indicated that the isolates were from the genus Enterobacter, Bacillus, Pseudomonas and Staphylococcus. Endhophytic bacteria that can produce IAA have the potential to be developed as biofertilizers to increase crop productivity.


Keywords


Asam indol asetat; Bakteri endofit; Citrus aurantifolia; Endophytic bacteria; Indole acetic acid

Full Text:

PDF

References


Ahmad, F., Ahmad, I., & Khan, M.S. (2005). Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turkish Journal of Biology, 29, 29-34.

Apine, O. A., & Jadhav, J. P. (2011). Optimization of media for indole-3-acetic acid production using Pantoea agglomerans strain PVM. Journal of Applied Microbiology, 110(5), 1235-1244.

Asril, M. (2017). Uji potensi Bacillus sp. dan Escherichia coli dalam menghasilkan indole acetid acid (IAA) tanpa menggunakan triptofan pada media pertumbuhan. Journal of Science and Aplicative Technology, 1(22), 82-86.

Bacon, C., & Hinton, D. (2006). Bacterial endophytes: The endophytic niche, its occupants, and its utility. In S. S. Gnanamanickam (Eds.), Plant-Associated Bacteria (pp. 155-194) Netherlands: Springer.

Belimov, A. A., Dodd, I. C., Safronova, V. I., Shaposhnikov, A. I., Azarova, T. S., Makarova, N. M., … Tikhonovich, I. A. (2015). Rhizobacteria that produce auxins and contain 1-amino-cyclopropane-1-carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well-watered and water-limited potato (Solanum tuberosum). Annals of Applied Biology, 167(1), 11-25. doi: 10.1111/aab.12203.

Bergey, D. H., & Holt, J. G. (1993). Bergey's manual of determinative bacteriology 9th edition. Baltimore: Williams & Wilkins.

Bharucha, U., Patel, K., & Trivedi, U. B. (2013). Optimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting Rhizobacteria on mustard (Brassica nigra). Agricultural Research, 2, 215-221. doi: 10.1007/s40003-013-0065-7.

Bhutani, N., Rajat, M., Monika, N., & Pooja, S. (2018). Optimization of IAA production by endophytic Bacillus spp. from Vigna radiata for their potential use as plant growth promoters. Israel Journal of Plant Sciences, 65(1), 1-2. doi: 10.1163/22238980-00001025.

Campisano, A., Antonielli, L., Pancher, M., Yousaf, S., Pindo, M., & Pertot, I. (2014). Bacterial endophytic communities in the grapevine depend on pest management. PLoS ONE, 9(11), e112763. doi: 10.1371/journal.pone.0112763.

Cassan, F., Vanderleyden, J., & Spaepen, S. (2014). Physiological and agronomical aspect of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillium. Journal of Plant Growth Regulation, 33(2), 440-459. doi: 10.1007/s00344-013-9362-4.

Chen, F., Wang, M., Zheng, Y., Luo, J., Yang, X., & Wang, X. (2010). Quantitative changes of plant defense enzyme and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus substilis B579. World Journal of Microbiology and Biotechnology, 26(4), 675-684.

Chen, B., Luo, S., Wu, Y., Ye, J., Wang, Q., Xu, X., … Yang, X. (2017). The effects of the endophytic bacterium Pseudomonas fluorescens Sasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance. Frontiers in Microbiology, 8, 2538. doi: 10.3389/fmicb.2017.02538.

Chi, Q., Tang, W., Liu, L., Meng, J., Dong, X., Chen, W., & Li, X. (2018). Isolation and properties of Enterobacter sp. LX3 capable of producing indoleacetic acid. Applied Sciences, 8(11), 1-11 doi: 10.3390/app8112108.

Pei, C., Mi, C., Sun, L., Liu, W., Li, O., & Hu, X. (2017). Diversity of endophytic bacteria of Dendrobium officinale based on cultur-dependent and culture-independent metods. Biotechnology and Biotechnological Equipment, 31(1), 112-119.

Das, G., Park, S., Choi, J., & Baek, K. (2018). Anticandidal potential of endophytic bacteria isolated from Dryopteris uniformis (Makino). Jundishapur Journal of Microbiology, 12(1), e69878. doi: 10.5812/jjm.69878.

Davies, P. J. (1995). Plant hormone: Physiology, biochemistry, and molecular biology. Boston: Kluwer academic.

Devi, K., Pandey, G., Rawat, A., Sharma, G., & Pandey, P. (2017). The endophytic symbiont-Pseudomonas aeruginosa stimulates the antioxidant activity and growth of Achyranthes aspera L. Frontiers in Microbiology, 8(1897), 1-14. doi: 10.3389/fmicb.2017.01897.

Dhungana., Sabitri, A., & Kazuhito, I. (2019). Effects of co-inoculation of indole-3-acetic acid-producing and degrading bacterial endophytes on plant growth. Horticulturae, 5(17),1-9. doi: 10.3390/horticulturae5010017.

Duan, J., Jiang, W., Cheng, Z., Heikkila, J. J., & Glick, B. R. (2013). The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLOS ONE, 8(3), 1-19. doi: 10.1371/journal.pone.0058640.

Duca, D., Lorv, J., Patten, C. L., Rose, D., & Glick, B. R. (2014). Indole-3-acetic acid inplant-microbe interactions. Antonie van Leeuwenhoek, 106(1), 85-125. doi: 10.1007/s10482-013-0095-y.

Eklund, D. M., Thelander, M., Landberg, K., Staldal, V., Nilsson, A., Johansson, M., … Sundberg E. (2010). Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens. Development, 137(8), 1275-1284. doi:10.1242/dev.039594.

Etesami, H., Alikhani, H. A., & Hosseini, H. M. (2015). Indole-3-acetid acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX, 2, 72-78. doi: 10.1016/j.mex.2015.02.008.

Etminani, F., & Harighi, B. (2018). Isolation and identification of endophytic bacteria with plant growth promoting activity and biocontrol potential from wild pistachio trees. The Plant Pathology Journal, 34(3), 208-217. doi: 10.5423/PPJ.OA.07.2017.0158.

Fu, S. F., Wei, J. Y., Chen, H. W., Liu, Y. Y., Lu, H. Y., & Chou, J. Y. (2015). Indole-3-acetid acid: A widespread physiological code in interaction of fungi with other organisms. Plant Signaling & Behavior, 10(8), e1048052.

Goryluk-Salmonowicz, A., Orzeszko-Rywka, A., Piórek, M., Rekosz-Burlaga, H., Otłowska, A. O., Gozdowski, D., & Błaszczyk, M. (2018). Plant growth promoting bacterial endophytes isolated from polish herbal plants. Acta Scientiarum Polonorum Hortorum Cultus, 17(5), 101-110. doi: 10.24326/asphc.2018.5.9.

Grossmann, K. (2010). Auxin herbicides: Current status of mechanism and mode of action. Pest Management Sciences, 66(2), 113-20. doi: 10.1002/ps.1860.

Grunennvaldt, R., Degenhardt-Goldbach, J., Tomasi, J., Santos, G., Vicente, V., & Deschamps, C. (2018). Bacillus megaterium: An endophytic bacteria from callus of Ilex paraguariensis with growth promotion activities. Biotecnología Vegetal, 18(1), 3-13.

Hallman, J., Quadt-Hallman, A., Mahaffee, W., & Kloepper, J. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43(10), 895-914.

Hardoim, P. R., Van, O., Verbeek, L. S., Van, E., & lsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16(10), 463-471. doi: 10.1016/j.tim.2008.07.008.

Herlina, L., Pukan, K., & Mustikaningtyas, D. (2017). The endophytic bacteria producing IAA (indole acetic acid) in Arachis hypogaea. Cell Biology & Development, 1(1), 31-35. doi: 10.13057/cellbioldev/t010106.

Hung, P., & Annapurna, K. (2004). Isolation and characterization of endophytic bacteria in soybean (Glycine sp.). Omonrice, 12, 92-101.

Khan, A. L., Halo, B. A., Elyassi, A., Ali, S., Al-Hosni, K., Hussain, J., ... Lee, I. (2016). Indole acetic acid and ACC deaminase fromendophytic bacteria improves the growth of Solanum lycopersicum. Electronic Journal of Biotechnology, 21, 58-64. doi:10.1016/j.ejbt.2016.02.001

Koga, J., Adachi, T., & Hidaka, H. (1991). Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Molecular and General Genetics, 226(1-2), 10-16.

Kuklinsky-Sobral, J., Araujo, W. L., Mendes, R., Geraldi, I.O., Pizzirani-Kleiner, A.A., & Azevedo, J. L. (2004). Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology, 6(12), 1244-1251.

Lata, H., Li, X., Silva, B., Moraes, R., & Halda-Alija, L. (2006). Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing. Plant Cell, Tissue and Organ Culture, 85(3), 353-359. doi: 10.1007/s11240-006-9087-1.

Lestari, P., Susilowati, D. N., & Riyanti, E. I. (2007). Pengaruh hormon asam indol asetat yang dihasilkan Azospirilum sp. terhadap perkembangan akar padi. Jurnal AgroBiogen, 3(2), 66-72.

Lopes, K. B. D., Carpentieri-Pipolo, V., Oro, T. H., Pagliosa, E. S., & Degrassi, G. (2016). Culturable endophytic bacterial communities associated with fieldgrown soybean. Journal of Applied Microbiology, 120(3),740-55. doi: 10.1111/jam.13046.

Macedo-Raygoza, G. M., Valdez-Salas, B., Prado, F. M., Prieto, K. R., Yamaguchi, L. F., Kato, M. J., … Beltran-Garcia, M. J. (2019). Enterobacter cloacae, an endhopyte that establishes a nutrient-transfer symbiosis with banana plants and protects against the black sigatoka pathogen. Frontier Microbiology, 10, 804. doi: 10.3389/fmicb.2019.00804.

Magnani, G. S., Didonet, C. M., Cruz, L. M., Pedrosa, E. O., & Souza, E. M. (2010). Diversity of endophytic bacteria in Brazilian sugarcane. Genetic and Molecular research, 9(1), 250-258.

Malfanova, N. V. (2013). Endophytic bacteria with plant growth promoting and biocontrol abilities (Doctoral dissertation). Leiden University, Netherlands.

Mano, Y., & Nemoto, K. (2012). The pathway of auxin biosynthesis in plants. Journal of Experimental Botany, 63(8), 2853-2872. doi: 10.1093/jxb/ers091.

Mattos, K. A., Padua, V. L. M., Romerio, A., Hallack, L. F., Neves, B. C., Ulisses, T. M. U., … Mendoca, P. L. (2008). Endophytic colonization of rice (Oryza sativa L.) by the diazotrophic bacteria Burkholderia kururiensis and its ability. Anais da Academia Brasileira de Ciências, 80(3), 477-493.

McSteen, P. (2010). Auxin and monocot development. Cold Spring Harbor Perspectives in Biology, 2(3), a001479. doi: 10.1101/cshperspect.a001479.

Nawangsih, A., Damayanti, I., Wiyono, S., & Kartika, J. (2011). Selection and characterization of endophytic bacteria as biocontrol agents of tomato bacterial wilt disease. HAYATI Journal of Biosciences, 18(2), 66-70. doi.org/10.4308/hjb.18.2.66.

Padder, S. A., Bhat, Z. A., & Kuldeep. (2017). Isolation and characterization of indole-3-acetic acid producing bacterial root endophytes associated with brown sarson (Brassica rapa L.). International Journal of Advances in Science Engineering and Technology, 5(3), 69-74.

Pandya, N. D., & Desai P. V. (2014). Screening and characterization of GA3 producing Pseudomonas monteilii and its impact on plant growth promotion. International Journal of Current Microbiology and Applied Sciences, 3(5), 110-115.

Patten, C. L., & Glick, B. R. (2002). Regulation of indole acetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Canadian Journal of Microbiology, 48(7), 635-642.

Prasetyoputri, A., & Ines. A. (2006). Mikroba endofit: Sumber molekul acuan baru yang berpotensi. BioTrends: Majalah Populer Bioteknologi, 1(2), 13-15.

Rosenblueth, M., & Romero, E. M. (2006). Bacterial endophyte and their interactions with hosts. Molecular Plant-Microbe Interactions, 19(8), 827-837.

Ruiza, D., Agaras, B., de Werrab, P., Wall, L. G., & Valverde, C. (2011). Characterization and screening of plant probiotic traits of bacteria isolated from rice seeds cultivated in Argentina. Journal of Microbiology, 49(6), 902-912. doi: 10.1007/s12275-011-1073-6.

Ryan, R. P., Germaine, K., Franks, A. F., Ryan, D. J., & Dowling, D. N. (2008). Bacterial endophytes: Recent developments and applications. FEMS Microbiology Letters, 278(1), 1-9.

Ryu, R. J., & Patten, C. L. (2008). Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by tyrR in Enterobacter cloacae UW5. Bacteriology, 190(21), 7200-7208.

Samavat, S., Besharati, H., & Behboudi, K. (2011). Interaction of Rhizobia cultural filtrates with Pseudomonas fluorescens on bean damping-off control. Journal of Agricultural Science and Technology (Iran), 13(6), 965-976.

Saxena, S. (2014). Microbial metabolite for development of ecofriendly agrochemical. Allelopathy Journal, 33(1), 1-24.

Sergeeva, E., Liaimer, A., & Bergman, B. (2002). Evidence for production of the phytohormone indole-3-acetic acid by Cyanobacteria. Planta, 215(2), 229-238.

Shi, Y., Lou, K., & Li, C. (2009). Isolation, quantity distribution and characterization of endophyte microorganisms within sugar beet. African Journal of Biotechnology, 8(5), 835-840.

Sitbon, F., Astot, C., Edlund, A., Crozier, A., & Sandberg, G. (2000). The relative importance of trypthopan-dependent and trypthophan-independent biosynthesis of indole-3-acetic acid in tobacco during vegetation growth. Planta, 211(5), 715-721. doi: 10.1007/s004250000338.

Spaepen, S., Jos, S., & Roseline, R. (2007). Indole-3-acetic acid in microbial and microorganism and microorganism signaling. FEMS Microbiology Reviews, 31(4), 425-48. doi: 10.1111/j.1574-6976.2007.00072.x.

Srinivasan, M., Holl, F. B., & Peterson, D. J. (1996). Influence of indole acetic acid producing Bacillus isolate on the nodulation of Phaseolus vulgaris by Rhizobium etli under gnotobiotic condition. Canadian Journal of Microbiology, 42(10), 1006-1014. doi: 10.1139/m96-129.

Srisuk., Nantana., Varunya, S., & Pumin, N. (2018). Production of indole-3-acetic acid by Enterobacter sp. DMKU-RP206 using sweet whey as a low-cost feed stock. Journal of Microbiology and Biotechnology, 28(9), 1511-1516. doi: 10.4014/jmb.1804.04043.

Suhandono, S., Kusumawardhani, M. K., & Aditiawati, P. (2016). Isolation and molecular identification of endophytic bacteria from rambutan fruits (Nephelium Lappaceum L.) Cultivar Binjai. HAYATI Journal of Biosciences, 23(1), 1-6. doi: 10.1016/j.hjb.2016.01.005.

Susilowati, D. N., Saraswati, R., Elsanti., & Yuniarti, E. (2003, September 23-24). Isolasi dan seleksi mikroba diazotrof endofitik dan penghasil zat pemacu tumbuh pada tanaman padi dan jagung. Paper presented at the Prosiding Seminar Hasil Penelitian Rintisan dan Bioteknologi Tanaman, Bogor, Indonesia. Retrieved from http://biogen.litbang.pertanian.go.id/terbitan/pdf/prosiding2003_128-144_susilowati_isolasi.pdf

Susilowati., N., D., Riyanti, E. I., Setyowati, M., & Mulya, K. (2002). Indole-3-acetic acid producing bacteria and its application on the growth of rice. In T. Arisuryanti, Maryani, Z. Rohmah, L. Hidayati, & G. R. Aristya (Eds.), Inventing Prosperous Future through Biological Research and Tropical Biodiversity Management. AIP Conference Proceedings, Indonesia. Retrieved from https://aip.scitation.org/doi/pdf/10.1063/1.5050112

Taghavi, S., Lelie, D., Hoffman, A., Zhang, Y., Walla, M., Vangronsveld, J., … Monchy, S. (2009). Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Applied and Environmental Microbiology, 75(3), 748.

Taghavi, S., Lelie, D., Hoffman, A., Zhang, Y-B., & Walla, M. D. (2010). Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLOS Genetics, 6(5), 1-15. doi: 10.1371/journal.pgen.1000943.

Tarabily, K. A. (2008). Promotion of tomato (Lycopersicum esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic aciddeaminase-producing streptomycete actinomycetes. Plant Soil, 308(1), 161-174.

Tian, B., Cao, Y., & Zhang, K. (2015). Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode Meloidogyne incognita. Scientific Reports, 5(17087), 1-15. doi: 10.1038/srep17087.

Tsavkelova, E. A., Cherdyntseva, T. A., Botina, S. G., & Netrusov, A. I. (2007). Bacteria associated with orchid roots and microbial production of auxin. Microbiological Research. 162(1), 69-76.

Widayanti, T. (2007). Isolasi dan karakterisasi Bacillus indegenus penghasil asam indol asetat asal tanah rizosfer (Skripsi sarjana). Departemen Biologi, FMIPA, Institut Pertanian Bogor, Bogor, Indonesia.

Yuan, Z. C., Liu, P., Saenkham, P., Kerr, K., & Nester, E. W. (2008). Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic condition (pH 5,5) and a complex acid-mediated signaling involve in Agrobacterium plant interactions. Journal of Bacteriology, 190(2), 494-507. doi: 10.1128/JB.01387-07.

Yuan, Z., Fang, L., & Zhan, G. (2015). Isolation of culturable endophytic bacteria from moso bamboo (Phyllostachys edulis) and 16S rDNA diversity analysis. Archives of Biological Sciences, 67(3), 63-63. doi: 10.2298/ABS141212063Y.

Zhang, C., Wei, D. D., Luo, P., Wei, A. C., & Guo, G. Q. (2016). The biosynthesis of auxin. Plant Growth Regulation, 78(3), 275-285.

Zhao, Y. (2010). Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology, 61(1), 49-64. doi: 10.1146/annurev-arplant-042809-112308.

Zheng, Y., Chen, J., Liu Z., Wu, M., Xing, L., & Shen, Y. (2008). Isolation, identification and characterization of Bacillus substilis ZJB-063, a versatile nitrile converting bacterium. Applied Microbiology and Biotechnology, 77(5), 985-993.

Zimmer, W., Hundeshagen, B., & Niederau, E. (1994). Demonstration of the indolepyruvate decarboxylase gene homologue in different auxin-producing species of the Enterobacteriaceae. Canadian Journal of Microbiology, 40(12), 1072-1076.




DOI: https://doi.org/10.15408/kauniyah.v13i2.13044 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120