STUDI PERTUMBUHAN DAN DEGRADASI FENOL OLEH KULTUR TUNGGAL AKTINOMISETES DARI TANAH GAMBUT

Tiara Elsita Masni, Tetty Marta Linda, Bernadeta Leni Fibriarti

Abstract


Abstrak

Fenol adalah senyawa organik yang bersifat toksik dan larut dalam air, sehingga mudah menimbulkan pencemaran pada perairan dan menurunkan kualitas air. Penelitian ini bertujuan untuk melihat potensi tiga isolat aktinomisetes asal tanah gambut Riau dalam Minimal Salt Medium yang mengandung fenol pada konsentrasi 0 ppm, 200 ppm, 400 ppm, dan 600 ppm serta mengetahui kemampuan aktinomisetes dalam mendegradasi fenol pada konsentrasi 600 ppm menggunakan metode folin ciocalteau. Potensi pertumbuhan isolat L121, L18, L11 menunjukkan total populasi tidak berbeda nyata dengan penambahan 400 ppm dan 600 ppm fenol, tetapi berbeda nyata terhadap 0 ppm dan 200 ppm fenol. Potensi pertumbuhan tertinggi terdapat pada isolat L121 dan terendah pada isolat L11. Kemampuan degradasi  fenol oleh  masing-masing isolat adalah  L121 sebesar 570,80 ppm (95%),  L18 sebesar 218,85 ppm (36%)  dan L11 sebesar  97,21 ppm (16%)  dari konsentrasi fenol awal 600 ppm pada Minimal Salt Medium. Isolat aktinomisetes ini berpotensi dikembangkan untuk penanggulangan pencemaran di lingkungan.

Abstract

Phenol is an organic compound is toxic and easily soluble in water so easy to cause pollution in a waters such as water quality degradation. The aim of this research is to see the potential of three isolates of actinomycetes from Riau peat soil in Minimal Salt Medium containing phenol concentration 0 ppm, 200 ppm, 400 ppm and 600 ppm and to know the ability of actinomycetes in degradation of phenol at the concentration of 600 ppm using folin ciocalteu. The growth potential of L121, L18, L11 isolates showed the total population was not significantly different with the addition of 400 ppm and 600 ppm of phenol but significantly different from 0 ppm and 200 ppm of phenol. The highest growth potential was found in L121 isolate and lowest in L11 isolate. The degradation ability of phenols by each isolate was L121 570.80 ppm (95%), L18 218.85 ppm (36%) and L11 was able to degrade phenol 97.21 ppm (16%) from the initial phenol concentration of 600 ppm at Minimum Salt Medium.These actinomycetes have the potential to be developed for the overcome of pollution in the environment.


Keywords


Aktinomisetes; Biodegradasi; Fenol; Actinomycetes; Biodegradation; Folin ciocalteau; Phenol

Full Text:

PDF

References


Bismo, S., Kustiningsih, I., Jayanuddin., Haryanto, F., & Saptono, H. J. (2008, January). Studi awal degradasi fenol dengan teknik ozonasi di dalam reaktor annular. Paper presented at the Prosiding Seminar Nasional Rekayasa Kimia dan Proses 2008, Semarang, Indonesia. Retrieved from http://staff.ui.ac.id/system/files/users/setijo.bismo/publication/srkp2008-2.pdf

Blainski, A., Lopes, G. C., & De Mello, J. C. P. (2013). Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules, 18(6), 6852-6865. doi: 10.3390/molecules18066852.

Dewilda, Y., Afrianita, R., & Iman, F. F. (2012). Degradasi senyawa fenol oleh mikroorganisme laut. Jurnal Teknik Lingkungan Unand, 9(1), 59-73.

Dong, F. M., Wang, L. L., Wang, C. M., Cheng, J. P., He, Z. Q., Sheng, Z. J., & Shen, R. Q. (1992). Molecular cloning and mapping of phenol degradation genes from Bacillus stearothermophilus FDTP-3 and their expression in Escherichia coli. Applied and Environmental Microbiology, 58(8), 2531-2535. doi: 10.1128/aem.58.8.2531-2535.1992.

Fanny, N. D., Linda, T. M., & Martina, A. (2018). Kemampuan isolat tunggal dan konsorsium aktinomisetes lokal riau dalam mendegradasi hidrokarbon minyak bumi. Bio-Site, 04(2), 53-60.

Ikawa, M., Schaper, T. D., Dollard, C. A., & Sasner, J. J. (2003). Utilization of folin-ciocalteu phenol reagent for the detection of certain nitrogen compounds. Journal of Agricultural and Food Chemistry, 51(7), 1811-1815. doi: 10.1021/jf021099r.

Iqbal, A., Arshad, M., Hashmi, I., Karthikeyan, R., Gentry, T. J., & Schwab, A. P. (2018). Biodegradation of phenol and benzene by endophytic bacterial strains isolated from refinery wastewater-fed Cannabis sativa. Environmental Technology (United Kingdom), 39(13), 1705-1714. doi: 10.1080/09593330.2017.1337232.

Jaweria, R., Peshwe, S. A., & Ingale, A. G. I. (2011). Biodegradation of p-nitro phenol by an Actinomycete. Indian Journal of Applied Research, 3(6), 241-243. doi: 10.15373/2249555x/june2013/80.

Kadri, T., Rouissi, T., Brar, S. K., Cledon, M., Sarma, S., & Verma, M. (2017). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. Journal of Environmental Sciences (China), 51, 52-74. doi: 10.1016/j.jes.2016.08.023.

Karigar, C. S., & Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 2011, 1-11. doi: 10.4061/2011/805187.

Komarawidjaja, W. (2009). Karakteristik dan pertumbuhan konsorsium mikroba lokal dalam media mengandung minyak bumi. Teknologi Lingkungan, 10(1), 114-119.

Krastanov, A., Alexieva, Z., & Yemendzhiev, H. (2013). Microbial degradation of phenol and phenolic derivatives. Engineering in Life Sciences, 13(1), 76-87. doi: 10.1002/elsc.201100227.

Linda, T. M., Martina, A., Febrianti, B. L., (2016). Seleksi aktinomisetes penghasil protease dari tanah gambut Desa Langkai, Siak, Riau. Jurnal Riau Biologia, 1(10), 62-66.

Liu, Z., Xie, W., Li, D., Peng, Y., Li, Z., & Liu, S. (2016). Biodegradation of phenol by bacteria strain Acinetobacter calcoaceticus PA isolated from phenolic wastewater. International Journal of Environmental Research and Public Health, 13(3), 1-8. doi: 10.3390/ijerph13030300.

Min, K., Freeman, C., Kang, H., & Choi, S. U. (2015). The regulation by phenolic compounds of soil organic matter dynamics under a changing environment. BioMed Research International, 2015, 1-11. doi: 10.1155/2015/825098.

Mohanty, S. S., & Jena, H. M. (2017). Biodegradation of phenol by free and immobilized cells of a novel Pseudomonas sp. NBM11. Brazilian Journal of Chemical Engineering, 34(1), 75-84. doi: 10.1590/0104-6632.20170341s20150388.

Mustafa, R. A., Hamid, A. A., Mohamed, S., & Bakar, F. A. (2010). Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. Journal of Food Science, 75(1), C28-35. doi: 10.1111/j.1750-3841.2009.01401.x.

Nair, C. I., Jayachandran, K., & Shashidhar, S. (2008). Biodegradation of phenol. African Journal of Biotechnology, 7(25), 4951-4958. doi: 10.4018/978-1-5225-8903-7.ch045.

Nweke, C. O., & Okpokwasili, G. C. (2014). Kinetics of growth and phenol degradation by Pseudomonas species isolated from petroleum refinery wastewater. International Journal of Biosciences (IJB), 4(7), 28-37. doi: 10.12692/ijb/4.7.28-37.

Nugroho, A. (2010). Produksi gas hasil biodegradasi minyak bumi: kajian awal aplikasinya dalam microbial enhanced oil recovery (Meor). MAKARA of Science Series, 13(2), 111-116. doi: 10.7454/mss.v13i2.405.

Pesrita, A., Linda, T. M., & Silvera, D. (2017). Seleksi dan akivitas enzim selulase aktinomisetes lokal Riau pada media seleksi dan akivitas enzim selulase aktinomisetes lokal Riau pada media lignoselulosa ampas tebu. Jurnal Riau Biologia, 2(1), 8-13.

Prapagdee, B., Kuekulvong, C., & Mongkolsuk, S. (2008). Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. International Journal of Biological Sciences, 4(5), 330-337. doi: 10.7150/ijbs.4.330.

Prayitno, J., & Sopiah, N. (2016). Penghilangan senyawa fenol oleh bakteri yang diisolasi dari area pertambangan minyak bumi. Jurnal Teknologi Lingkungan, 17(2), 126-131. doi: 10.29122/jtl.v17i2.1067.

Sharma, B., Dangi, A. K., & Shukla, P. (2018). Contemporary enzyme based technologies for bioremediation: A review. Journal of Environmental Management, 210, 10-22. doi: 10.1016/j.jenvman.2017.12.075.

Shetty, G. R., Deekshitha., & Kodialbail, V. S. (2016). Media optimization for biodegradation of phenol by Nocardia hydrocarbonoxydans NCIM 2386. Research Journal of Chemical and Environmental Sciences, 4(4S), 19-24.

Slamet., Arbianti, R., & Daryanto. (2005). Pengolahan limbah organik (fenol) dan logam berat (Cr6+ atau Pt4+) secara simultan dengan fotokatalis TiO2, ZnO-TiO2, dan CdS-TiO2. Makara, Teknologi, 9(2), 66-71

Stoilova, I., Dimitrova, G., Angelova, G., & Krastanov, A. (2017). Biodegradation of phenol, catechol and 2, 4-dichlorophenol at higher initial inhibitory concentrations by Trametes versicolor 1 in a “fed-batch” process. Bulgarian Journal of Agricultural Science, 23(6), 988-993.

Suhaila, Y. N., Rosfarizan, M., Ahmad, S. A., Latif, I. A., & Ariff, A. B. (2013). Nutrients and culture conditions requirements for the degradation of phenol by Rhodococcus UKMP-5M. Journal of Environmental Biology, 34(3), 635-643.

Villaseñor, J., Reyes, P., & Pecchi, G. (2002). Catalytic and photocatalytic ozonation of phenol on MnO2 supported catalysts. Catalysis Today, 76(2-4), 121-131. doi: 10.1016/S0920-5861(02)00212-2.

Zhu, X., Zhu, X., Venosa, A. D., Venosa, A. D., Suidan, M. T., Suidan, M. T., … Lee, K. (2001). Guidelines for the bioremediation of marine shorelines and freshwater wetlands. Environmental Protection, January, 163.




DOI: https://doi.org/10.15408/kauniyah.v13i1.12854 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120