KONDROGENESIS ADIPOSE-DERIVED STEM CELLS MENGGUNAKAN PLATELET-RICH PLASMA PADA SCAFFOLD SUTRA

Imam Rosadi, Karina Karina, Komang A. Wahyuningsih, Iis Rosliana, Tias Widyastuti, Siti Sobariah, Irsyah Afini, Anggraini Barlian

Abstract


Abstrak

Studi tentang kemampuan adipose-derived stem cells (ADSCs) sebagai sel punca yang dapat berdiferensiasi menjadi kondrosit menggunakan platelet-rich plasma (PRP) sebagai subtitusi fetal bovine serum (FBS) telah banyak dilaporkan. Penggunaan medium pertumbuhan dengan kombinasi ADSCs, PRP dan scaffold sutra masih belum banyak dipelajari dalam rekayasa jaringan kartilago. Studi ini bertujuan untuk mempelajari pengaruh medium yang mengandung 5%, 10% dan 20% PRP terhadap proses kondrogenesis ADSCs manusia yang dikultur pada scaffold sutra Bombyx mori Indonesia. Metode penelitian diawali dengan pembuatan scaffold sutra menggunakan metode salt-leaching, isolasi dan kultur ADSCs manusia dari jaringan lemak, uji pertumbuhan ADSCs pada scaffold sutra dengan variasi konsentrasi PRP pada medium serta analisis kadar glikosaminoglikan (GAG). Hasil penelitian menunjukkan bahwa ADSCs yang dikultur menggunakan PRP lebih tinggi laju pertumbuhannya dibandingkan dikultur menggunakan FBS selama 7 hari pengamatan. Kadar GAG yang disekresikan ADSCs kelompok PRP juga lebih tinggi dibandingkan kelompok FBS. Kadar GAG tertinggi pada hari ke-21 pengamatan adalah medium yang mengandung 20% PRP kemudian 10% dan 5%, sedangkan kadar GAG kelompok kontrol cenderung stabil pada kadar yang rendah. Berdasarkan hasil tersebut, medium yang mengandung PRP memiliki potensi dalam menginduksi kondrogenesis ADSCs yang dikultur pada scaffold sutra.

Abstract

The studies on adipose-derived stem cells (ADSCs) differentiation into chondrocytes using platelet-rich plasma (PRP) as a substitute for fetal bovine serum (FBS) have been reported. However, the combination of ADSCs, PRP and silk fibroin scaffold has not been widely studied for developing cartilage engineering. Therefore, this research aims to study the effect of medium containing 5%, 10% and 20% PRP towards chondrogenesis of human ADSCs cultured on silk fibroin scaffold from Indonesia Bombyx mori. At first, the silk fibroin scaffold was fabricated using a salt-leaching method, then ADSCs were isolated and cultured from adipose tissues. The assays of growth curve and biocompatibility of silk fibroin scaffold toward ADSCs supplemented by PRP as well as glycosaminoglycans (GAG) concentration were conducted later. The results showed that higher absorbance of proliferation rate was on ADSCs supplemented by various PRP concentrations compare to FBS control group for seven days of observation. Level of GAG, which secreted by ADSCs supplemented by a various concentration of PRP, was also higher than the FBS group. The highest level of GAG on day 21 was observed in 20% PRP group then 10% and 5% PRP, while a group of GAG level is stable at low levels. This study concludes that PRP has the potential to induce chondrogenesis ADSCs which cultured on silk fibroin scaffold.


Keywords


ADSCs; Glikosaminoglikan; Kondrogenesis; Platelet-rich plasma; Scaffold sutra; Chondrogenesis; Glycosaminoglycans; Silk fibroin scaffold

Full Text:

PDF

References


Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J., . . . Kaplan, D. L. (2003). Silk-based biomaterials. Biomaterials, 24(3), 401-416. doi: 10.1016/S0142-9612(02)00353-8

Atashi, F., Jaconi, M. E., Pittet-Cuenod, B., & Modarressi, A. (2014). Autologous platelet-rich plasma: A biological supplement to enhance adipose-derived mesenchymal stem cell expansion. Tissue Engineering Part C Methods, 21(3), 253-262. doi: 10.1089/ten.tec.2014.0206

Atashi, F., Serre-Beinier, V., Nayernia, Z., Pittet-Cuénod, B., & Modarressi, A. (2015). Platelet rich plasma promotes proliferation of adipose derived mesenchymal stem cells via activation of AKT and Smad2 signaling pathways. Journal of Stem Cell Research & Therapy, 5(8), 1-10. doi: 10.4172/2157-7633.1000301

Blande, I., Bassaneze, V., Lavini-Ramos, C., Fae, K., Kalil, J., Miyakawa, A., . . . Krieger, J. (2009). Adipose tissue mesenchymal stem cell expansion in animal serum-free medium supplemented with autologous human platelet lysate. Transfusion, 49(12), 2680-2685. doi: 10.1111/j.1537-2995.2009.02346.x

Correia, C., Bhumiratana, S., Yan, L. P., Oliveira, A. L., Gimble, J. M., Rockwood, D., . . . Vunjak-Novakovic, G. (2012). Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomaterialia, 8(7), 2483-2492. doi: 10.1016/j.actbio.2012.03.019

da Costa, D. S., Reis, R. L., & Pashkuleva, I. (2017). Sulfation of glycosaminoglycans and its implications in human health and disorders. Annual Review of Biomedical Engineering, 19(1), 1-26. doi: 10.1146/annurev-bioeng-071516-044610

Dhurat, R., & Sukesh, M. S. (2014). Principles and methods of preparation of platelet-rich plasma: a review and author's perspective. Journal of cutaneous and aesthetic surgery, 7(4), 189-197. doi: 10.4103/0974-2077.150734

Evans, N. D., Gentleman, E., & Polak, J. M. (2006). Scaffolds for stem cells. Materials Today, 9(12), 26-33. doi: 10.1016/S1369-7021(06)71740-0

Frazier, S. B., Roodhouse, K. A., Hourcade, D. E., & Zhang, L. (2008). The quantification of glycosaminoglycans: a comparison of HPLC, carbazole, and alcian blue methods. Open Glycoscience, 1(1), 31-39. doi: 10.2174/1875398100801010031

Gasimli, L., Hickey, A. M., Yang, B., Li, G., dela Rosa, M., Nairn, A. V., . . . Linhardt, R. J. (2014). Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages. Biochimica et Biophysica Acta (BBA)- General Subjects, 1840(6), 1993-2003. doi: 10.1016/j.bbagen.2014.01.007

Gentile, P., Orlandi, A., Scioli, M. G., Di Pasquali, C., Bocchini, I., & Cervelli, V. (2012). Concise review: adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery. Stem Cells Translational Medicine, 1(3), 230-236. doi: 10.5966/sctm.2011-0054

Hofmann, S., Knecht, S., Langer, R., Kaplan, D. L., Vunjak-Novakovic, G., Merkle, H. P., & Meinel, L. (2006). Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells. Tissue Engineering, 12(10), 2729-2738. doi: 10.1089/ten.2006.12.2729

Huang, S. J., Fu, R. H., Shyu, W. C., Liu, S. P., Jong, G. P., Chiu, Y. W., . . . Lin, S. Z. (2013). Adipose-derived stem cells: isolation, characterization, and differentiation potential. Cell Transplantation, 22(4), 701-709. doi: 10.3727/096368912X655127

Kang, Y. J., Jeon, E. S.,& Song, H. Y. (2005). Role of c-Jun N-terminal kinase in the PDGF-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells. Journal of Cellular Biochemistry, 95(6), 1135-1145. doi: 10.1002/jcb.20499

Kocaoemer, A., Kern, S., Klüter, H., & Bieback, K. (2007). Human AB serum and thrombin‐activated platelet‐rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells, 25(5), 1270-1278. doi: 10.1634/stemcells.2006-0627

Meinel, L., Hofmann, S., Karageorgiou, V., Zichner, L., Langer, R., Kaplan, D., & Vunjak‐ Novakovic, G. (2004). Engineering cartilage‐like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnology and Bioengineering, 88(3), 379-391. doi: 10.1002/bit.20252

Palumbo, S., Tsai, T. L., & Li, W. J. (2014). Macrophage migration inhibitory factor regulates AKT signaling in hypoxic culture to modulate senescence of human mesenchymal stem cells. Stem Cells and Development, 23(8), 852-865. doi: 10.1089/scd.2013.0294

Pawitan, J. A., Suryani, D., Wulandari, D., Damayanti, L., Liem, I. K., & Purwoko, R. Y. (2014). Prolonged culture in FBS and FBS-substitute containing media: spontaneous chondrogenic differentiation of adipose tissue derived mesenchymal stem cells. International Journal of PharmTech Research, 6(1), 224-235.

Shahdadfar, A., Frønsdal, K., Haug, T., Reinholt, F. P., & Brinchmann, J. E. (2005). In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells, 23(9), 1357-1366. doi: 10.1634/stemcells.2005-0094

Shen, J., Gao, Q., Zhang, Y., & He, Y. (2015). Autologous platelet rich plasma promotes proliferation and chondrogenic differentiation of adipose derived stem cells. Molecular Medicine Reports, 11(2), 1298-1303. doi: 10.3892/mmr.2014.2875

Trujillo, N. A., & Popat, K. C. (2014). Increased adipogenic and decreased chondrogenic differentiation of adipose derived stem cells on nanowire surfaces. Materials, 7(4), 2605-2630. doi: 10.3390/ma7042605

Van Pham, P., Bui, K. H., Ngo, D. Q., Vu, N. B., Truong, N. H., Phan, N. L., . . . Phan, N. K. (2013). Activated platelet-rich plasma improves adipose-derived stem cell transplantation efficiency in injured articular cartilage. Stem Cell Research & Therapy, 4(91), 1-11. doi: 10.1186/scrt277

Wang, Y., Kim, U. J., Blasioli, D. J., Kim, H. J., & Kaplan, D. L. (2005). In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials, 26(34), 7082-7094. doi: 10.1016/j.biomaterials.2005.05.022

Wang, Y., Kim, H. J., Vunjak-Novakovic, G., & Kaplan, D. L. (2006). Stem cell-based tissue engineering with silk biomaterials. Biomaterials, 27(36), 6064-6082. doi: 10.1016/j.biomaterials.2006.07.008

Whiteman, P. (1973). The quantitative measurement of alcian blue-glycosaminoglycan complexes. Biochemical Journal, 131(2), 343-350. doi: 10.1042/bj1310343

Willerth, S. M., & Sakiyama-Elbert, S. E. (2008). Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. Stem Journal, 1(1), 1-25. doi: 10.3233/STJ-180001.

Zuk, P. A. (2010). The Adipose-derived stem cell: looking back and looking ahead. Molecular Biology of The Cell, 21(11), 1783-1787. doi: 10.1091/mbc.e09-07-0589.




DOI: https://doi.org/10.15408/kauniyah.v13i1.12053 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120