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Abstract 

Multiple linear regression analysis is widely used among psychological researchers to answer their 

research question related to causality relationship. Exploring the relative importance of independent 
variables in explaining the total variation in dependent variable is one of the primary interests upon 
finding a good fit model from the data. This paper considers two popular methods to obtain relative 
importance, namely Shapley value regression and relative weight analysis. Both are able to break down 
the R2 of the full model into individual contribution proportion of each independent variable while 
accounting for the correlations between independent variables and thus offer easily interpretable effect 
size measures for regressions. Kaggle’s empirical data from the World Happiness 2019 will illustrate the 
theoretical concept of methods above. 
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Introduction 

The next step upon finding a good fit data of multiple linear regression is discovering which of the 

independent variables are able to explain the highest variability in the dependent variable. For example, a 

simple study to investigate the impact of attitude and motivation on foreign language learning may 

investigate the relative importance of each of the two variables in explaining language learning. This will 

determine if the learner’s motivation or learner’s attitude truly can explain the success of learning foreign 

language.  

According to Shabuz and Garthwaite (2019), the term importance can have multiple meanings. The first 

definition states that importance is closely related to the statistical significance of the corresponding 

regression coefficient. A second definition defines the basis of a variable’s practical impact on the dependent 

variable. Healy (1990) argued that the definition of relative importance is not just about the question of 

statistical significance. 

 Numerous methods have been proposed to evaluate relative importance in regression models such as 

standardized regression coefficients, R2-changed, semi-partial correlations, zero-order correlation (Stadler 

et al., 2017; Johnson & LeBreton, 2004). A method using standardized coefficient is highly susceptible to 

multicollinearity as a result of the regression coefficient value’s inflation and sign changing, thus leading to 

inaccurate results (Lipovetsky & Conklin, 2015).  In addition, when the independent variables correlate 

with each other, these methods fail to evaluate the relative importance as they cannot properly divide the 

proportion of variance to the different independent variables (Darlington, 1968). This type of situation is 

common in psychological research when measuring constructs that consist of correlated facets.  

This multicollinearity problem intensifies the development of relative importance analysis in recent years 

to measure the importance of independent variables by considering the correlations between them. This 

paper elaborates the theoretical aspects of two popular methods, i.e. Shapley value regression and relative 

weight analysis, to assess the relative importance in addition to multiple regression analysis. Despite the 

fact that these two methods have been developed in very different ways, Groemping (2015) proved that 

they provide similar scores. Furthermore, these methods are demonstrated to have the desirable property 

to measure the sum of individual contributions of the independent variables to the proportion of the 

variability in the dependent variable (R2) in the presence of multicollinearity. An empirical study using a 

dataset from Kaggle is capable to identify the importance of each independent variable by using Shapley 

value regression and relative weight analysis. 

Methods  

Consider a multiple regression model as follows: 

𝑦 = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑝𝑥𝑝 + 𝑒                                               (1) 

Assuming all independent variables have no correlation with each other, then the standardized 

regression coefficients can be used to measure relative importance, that is the sum of the squared of the 

standardized coefficients equals to the total R2. This suggests that each individual squared coefficient 

measures the proportion of total variability in dependent variable by that individual variable. However, this 

situation almost never exists in psychological research. Therefore, using standardized coefficient to assess 

the contribution of each independent variable to the total R2 is not advisable.  

R2-changed is another common approach used to determine which independent variable contributes 

most in explaining the dependent variable. It is also called analysis of variance in which the proportions are 

accounted for by each independent variable when added to the regression model. This method also suffers 
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from multicollinearity as the resulting proportion’s arbitrary nature depends on which independent variable 

enters the model first.  

In this paper, we introduce two methods called Shapley value regression and relative weight analysis to 

address the situation mentioned above in order to determine the relative importance of each independent 

variable. 

Shapley Value Regression 

Shapley value is a solution from a cooperative game theory concept introduced by Shapely (1953). It 

aims to fairly estimate the importance of each collaborative player to the total gained profits considering 

that each may have different amounts of contribution. Regression analysis borrowed and applied this idea 

to estimate the importance of independent variables when high multicollinearity exists in the data. The 

marginal contribution from independent variable k to the total variability of dependent variable within a 

multiple linear regression model can be observed in terms of Shapley value (Joseph, 2019; Strumbelj and 

Kononenko, 2010): 

𝜙𝑘 (𝑣) = ∑
|𝑆|!(𝑝−|𝑆|−1)!

𝑝!
[𝑣(𝑆 ∪ {𝑘}) − 𝑣(𝑆)]𝑆⊆𝑃\{𝑘}                                    (2) 

Assuming there are p independent variables included in the multiple regression model, 𝑃\{𝑘} represents 

the set of all possible models when the kth variable is excluded, |𝑆| is the number of variables included in the 

model, and P is a set of all p independent variables. For 𝑅2 decomposition, 𝑣(𝑆) ≡ 𝑅2(𝑆), i.e. the 𝑅2 of a 

regression model including only the variable in S and  𝑣(𝑆 ∪ {𝑘})  ≡ 𝑅2(𝑆 ∪ {𝑘}) is the 𝑅2 from the same 

model including the kth variable. From equation (2), it follows that 𝑣(𝑃) = 𝑅2 which is the marginal 

contribution of the kth variable to overall 𝑅2 (Coleman, 2017). 

For illustration, consider a multiple linear regression with two independent variables 𝑥1 and 𝑥2 regressed 

on the dependent variable 𝑦. The shapley value or marginal contribution of 𝑥1 to the overall  𝑅2 can be 

computed by considering 𝑆 = {𝑎, 𝑎 + 𝑏2𝑥2}, where 𝑎 represents an intercept model without any 

independent variables and 𝑎 + 𝑏2𝑥2 is a simple regression model where 𝑥2 is the only independent variable. 

Thus, 

𝜙1 (𝑣) =
0! (2 − 0 − 1)!

2!
[𝑅2( 𝑎 + 𝑏1𝑥1) − 𝑅2( 𝑎)] +

1! (2 − 1 − 1)!

2!
[𝑅2( 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2) − 𝑅2( 𝑎 + 𝑏2𝑥2)] 

𝜙1 (𝑣) =
1

2
[𝑅2( 𝑎 + 𝑏1𝑥1) + (𝑅2( 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2) − 𝑅2( 𝑎 + 𝑏2𝑥2))] 

Similarly, the marginal contribution of 𝑥1 to the overall  𝑅2 can be computed by considering 𝑆 = {𝑎, 𝑎 +

𝑏1𝑥1} and thus, 

𝜙2 (𝑣) =
1

2
[𝑅2( 𝑎 + 𝑏2𝑥2) + (𝑅2( 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2) − 𝑅2( 𝑎 + 𝑏1𝑥1))] 

It is clear  𝜙1 (𝑣) + 𝜙2 (𝑣) = 𝑅2( 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2) shows that each independent variable shares a unique 

contribution to the overall 𝑅2. This indicates that if multicollinearity exists in the data, the Shapley value 

regression decomposes the overall 𝑅2 into marginal contribution and allows us to determine which 

independent variable with the greatest contribution to variability of the dependent variable. A regression 

model containing more than two independent variables obtained by generalizing the Shapley value shows 

a formula as follows: 

𝑅2 = ∑ 𝜙
𝑖

(𝑣)𝑝
𝑖=1                                                                 (3) 

Package ‘relaimpo’ in R is available for the users to fit Shapley value regression developed by Groemping 

(2006). 
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Relative Weight Analysis 

Relative weight (RW) analysis introduced by Johnson (2000) is an alternative method to Shapley 

regression to derive marginal contribution in multiple linear regression models. The basic idea of this 

method is transforming correlated independent variables (x) into a new set of orthogonal variables (z) that 

are not correlated with each other. Consider an example of a regression model with two correlated 

independent variables on a dependent variable (y) as depicted in Figure 1. This shows that association 

between any of the two independent variables and the dependent variable can be represented by two 

different regression equations (Tonidandel et al., 2009). The first equation presents the relationship between 

the original independent variables (x) and the orthogonal variables (z) defined as follows: 

𝑥1 = 𝜆11𝑧1 + 𝜆12𝑧2                                                                      (4) 

Where 𝜆𝑖𝑗 denotes the standardized regression coefficient linking the jth original independent variable 

with the kth orthogonal variable or may also be interpreted as correlation between 𝑥𝑖 and 𝑧𝑗. The second 

equation describes the relationship between the orthogonal variables and the dependent variable, as follows: 

𝑦 = 𝛽1𝑧1 + 𝛽2𝑧2                                                                      (5) 

Where 𝛽𝑗 denotes the standardized regression coefficient that links orthogonal variable with the 

dependent variable. By considering these two equations, the relative weight or the variance in dependent 

variable that can be explained by independent variable i is calculated as the sum of the squared products of 

the two regression coefficients (𝜆𝑖𝑗, 𝛽𝑗): 

𝑅𝑊 𝑜𝑓 𝑥𝑖 = 𝜆𝑖1
2 𝛽1

2 + 𝜆𝑖2
2 𝛽2

2  for 𝑖 = 1,2                                                    (6) 

The squared product of regression coefficients (𝜆𝑖𝑗
2 𝛽𝑗

2) describes the proportion of variability in the 

dependent variable associated with 𝑥𝑖 through 𝑧𝑗. Adding these terms across all 𝑧𝑗 yields the total proportion 

of variance attributed to 𝑥𝑖. Therefore, relative weight may be used to measure the total variability in 

dependent variable that is explained by 𝑥1 independent of 𝑥2 as shown in equation (6). 

 
Figure 1. Relative weight for a regression model with two independent variables 

(adopted from Stadler et al., 2004) 

Results and Discussion  

This paper used Kaggle’s World happiness data to demonstrate Shapley regression value and relative 

weight analysis in calculating relative importance. The dataset contains happiness level from 156 countries 

measured in 2019. The happiness index acts as dependent variable that is regressed against five independent 

variables, i.e. GDP per capita (x1), social support (x2), healthy life expectancy (x3), freedom to make life 

choices (x4), and perception of corruption (x5). The overall model indicates that multiple regression model 

fits the data (F(5,150)=105, p<0.0001). The R2=0.777 showing that the five independent variables are able 

to explain 77.77% of variability in happiness. After obtaining a good fit model, assessing the contribution 

of each independent variable to the total variation is the next thing to explore.  
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Table 1 provides the calculation for marginal contribution from GDP per capita (x1) to the total 

variability in happiness by using Shapley value regression. In total, 16 possible regression models are good 

fit when including and excluding x1 from the model. The term 
|𝑆|!(𝑝−|𝑆|−1)!

𝑝!
 in equation (2) is denoted by 

weight (𝜸) in the table. Partial contribution of x1 to its marginal contribution when fitting regression model 

with x1 and, x2 is 0.05 × (0.704 − 0.604) = 0.005. By adding these values over all 16 possible models, we 

get marginal contribution of x1 to be 0.213 and marginal contribution from other variables can use similar 

calculation. This method found that the marginal contribution for social support, healthy life expectancy, 

freedom to make life choices, and perception of corruption are 0.211, 0.201, 0.108, and 0.044, respectively. 

Table 1. All Possible Regression Models with and without x1 and Their Associated R2 

No. Independent Variable R2 |S| Weight (𝜸) 𝜸[𝑹𝟐(𝑺 ∪ {𝒌}) − 𝑹𝟐(𝑺)] 

1 none 0.000    

 x1 0.630 0 0.20 0.126 

2 x2 0.604    

 x1,x2 0.704 1 0.05 0.005 

3 x3 0.608    

 x1,x3 0.675 1 0.05 0.003 

4 x4 0.321    

 x1,x4 0.713 1 0.05 0.020 

5 x5 0.149    

 x1,x5 0.654 1 0.05 0.025 

6 x2,x3 0.705    

 x1,x2,x3 0.726 2 0.03 0.001 

7 x2,x4 0.664    

 x1,x2,x4 0.754 2 0.03 0.003 

8 x2,x5 0.666    

 x1,x2,x5 0.734 2 0.03 0.002 

9 x3,x4 0.689    

 x1,x3,x4 0.742 2 0.03 0.002 

10 x3,x5 0.635    

 x1,x3,x5 0.694 2 0.03 0.002 

11 x4,x5 0.344    

 x1,x4,x5 0.716 2 0.03 0.012 

12 x2,x3,x4 0.750    

 x1,x2,x3,x4 0.771 3 0.05 0.001 

13 x2,x3,x5 0.736    

 x1,x2,x3,x5 0.752 3 0.05 0.001 

14 x3,x4,x5 0.693    

 x1,x3,x4,x5 0.745 3 0.05 0.003 

15 x2,x4,x5 0.690    

 x1,x2,x4,x5 0.762 3 0.05 0.004 

16 x2,x3,x4,x5 0.760    

 x1,x2,x3,x4,x5 0.778 4 0.20 0.004 

Total marginal contribution of x1 0.213 
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In order to find the marginal contribution for the five independent variables by using relative weight 

analysis, estimation of the standardized regression coefficient that represents the link between the original 

independent variable with the orthogonal variable (𝜆𝑖𝑗) and the link between the orthogonal variable with 

the dependent variable (𝛽𝑗) is required. Table 2 provides these estimates. 

 Table 2. The Estimated Standardized Regression Coefficients for 𝜆𝑖�̂� and �̂�𝑗 

�̂�𝑖𝑗  
�̂�𝑗 

𝑗 𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 𝑖 = 5  

1 0.818 0.353 0.419 0.129 0.119  0.460 

2 0.353 0.857 0.320 0.195 0.034  0.469 

3 0.419 0.320 0.830 0.141 0.114  0.442 

4 0.129 0.195 0.141 0.939 0.211  0.332 

5 0.119 0.034 0.114 0.211 0.963  0.202 

 

Using equation similar to (6), the marginal contribution for x1 to the total variation of the dependent 

variable is expressed in equation below:  

0.8182(0.4602) + 0.3532(0.4692) + 0.4192(0.4422) + 0.1292(0.3322) + 0.1192(0.2022) = 0.206 

Marginal contribution for other variables (x2, sx3, x4, and x5) under relative weight analysis are 0.212, 

0.917, 0.114, and 0.049, respectively, by using similar calculations. 

Table 3 compares the results for relative importance obtained from Shapley value regression and relative 

weight analysis, including the correlation between independent variables with the presence of 

multicollinearity in the data as a result of very high correlation between GDP per capita and life expectancy 

showing correlation coefficient of 0.835. The unstandardized regression coefficients show that all variables 

have significant effect on happiness, however it cannot determine the most influential variable considering 

the scales used to measure the variables are different. The order of importance for independent variables 

closely resembles those obtained from relative weight analysis yet the assessment of contribution to total 

variation is not viable due to multicollinearity.   

Table 3. The estimated standardized regression coefficients for 𝜆𝑖�̂� and �̂�𝑗 

Correlation between independent variables  Unstandardized 

regression 

coefficient 

Standardized 

regression 

coefficient 

Relative 

Importance 

 x1 x2 x3 x4 x5  
Shapley 

Value 

Relative 

Weight 

x1 1 0.755 0.835 0.379 0.299  0.746* 0.267 0.213 0.206 

x2  1 0.719 0.447 0.182  1.118* 0.301 0.211 0.212 

x3   1 0.390 0.295  1.084* 0.236 0.201 0.197 

x4    1 0.439  1.534* 0.197 0.108 0.114 

x5     1  1.118* 0.095 0.044 0.049 

*significant at 5% level 

In general, the marginal contribution derived from both methods are almost similar except that Shapley 

value regression identifies GDP per capita as the most important variable in explaining happiness due to it 

having the biggest proportion (0.213), while relative weight analysis indicates social support as the most 

important driver of happiness with the largest proportion of 0.212. However, one can argue that the 

contribution from GDP and social support on happiness are not much different under both methods, thus 

GDP and social support are both equally important factors in explaining the variability of happiness. 
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Advance bootstrapping method is a course of action to take towards finding the statistical difference 

between GDP and social support, however this paper doesn’t examine the matter thus leaving it as a 

recommendation for future research.  

According to several studies, both relative weight analysis and Shapley value regression always 

consistently yield similar results indicating that there is an underlying construct that both methods appraise 

(Shabuz & Garthwaite, 2019). The findings in this study confirmed that the drawback of Shapley regression 

is that it becomes computationally intensive because the time to compute the Shapley values grow 

exponentially as the number of independent variables increases. It becomes cumbersome when there are 

more than 10 variables (Aas et al., 2020). Meanwhile, relative weight analysis offers the flexibility to use as 

many independent variables as the researchers want. It doesn’t put any constraint on the number of 

independent variables to be included in the regression model and thus can be considered as a strong 

alternative solution to Shapley regression. 

Conclusion 

Shapley value regression and relative weight analysis are the most widely recommended methods 

intended to find relative importance of variables. Both methods usually produce similar evaluations and are 

able to split up the total variation in the dependent variable (R2) into the individual contributions made by 

each independent variable while accounting for multicollinearity in the data. In addition to multiple linear 

regression analysis, psychological researchers can consider these approaches as valuable supplements to 

their primary analysis to explain the most important independent variable that makes the most contribution 

in their variable of interest. For future research, the evaluation of statistical significance of relative 

importance is highly advised, such as testing whether the estimated Shapley value or relative weight is 

significantly different from zero or testing whether the two estimates are significantly different from each 

other. This recommendation will require advanced statistical methods such as bootstrapping technique to 

achieve best results. 
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