Error-Resilient Quantum Machine Learning for Real-World Optimization Problems in Finance and Supply Chain Networks
DOI:
https://doi.org/10.15408/zmv0gv56Keywords:
Error resilience, Financial modeling, Hybrid algorithms, Optimization challenges, Quantum computing, Quantum machine learningAbstract
The advent of quantum computing has introduced a revolutionary shift in computational paradigms, with the potential to address complex problems beyond the reach of classical systems. However, the practical deployment of quantum solutions is challenged by inherent issues such as noise and decoherence, which hinder their reliability. This study presents a novel error-resilient framework tailored for quantum machine learning (QML) to address optimization problems in finance and supply chain networks. By utilizing hybrid quantum-classical algorithms, the framework mitigates the detrimental effects of quantum noise and enhances computational robustness through advanced techniques like quantum variational circuits. Comprehensive experiments on real-world datasets highlight the framework's ability to outperform conventional methods in solving intricate optimization challenges. The findings demonstrate the transformative potential of quantum-assisted optimization for tackling critical issues in financial modeling and supply chain resilience. In this work, I propose a novel hybrid quantum-classical framework that integrates variational quantum circuits with noise mitigation strategies such as Zero Noise Extrapolation (ZNE), tailored for real-world optimization in finance and supply chain domains. This integrated approach—addressing error resilience and practical scalability together—sets the work apart from existing studies focused solely on theoretical or idealized scenarios.
Keywords: Error resilience; Financial modeling; Hybrid algorithms; Optimization challenges; Quantum computing; Quantum machine learning.
Abstrak
Munculnya komputasi kuantum telah memperkenalkan pergeseran revolusioner dalam paradigma komputasi, dengan potensi untuk mengatasi masalah kompleks di luar jangkauan sistem klasik. Namun, penerapan praktis solusi kuantum ditantang oleh masalah inheren seperti kebisingan dan dekoherensi, yang menghambat keandalannya. Studi ini menyajikan kerangka kerja baru mengenai ketahanan kesalahan (error-resilient) yang dirancang untuk pembelajaran mesin kuantum (QML) dalam mengatasi masalah optimasi pada jaringan keuangan dan rantai pasokan. Dengan memanfaatkan algoritma kuantum-klasik hibrida, kerangka kerja tersebut mengurangi efek merugikan dari kebisingan kuantum dan meningkatkan ketahanan komputasi melalui teknik canggih seperti sirkuit variasional kuantum. Eksperimen komprehensif pada kumpulan data dunia nyata menyoroti kemampuan kerangka kerja untuk mengungguli metode konvensional dalam memecahkan tantangan pengoptimalan yang rumit. Temuan ini menunjukkan potensi transformatif pengoptimalan berbantuan kuantum (quantum-assisted) untuk mengatasi masalah kritis dalam pemodelan keuangan dan ketahanan rantai pasokan. Pada artikel ini, kami mengusulkan kerangka kerja kuantum-klasik hibrida baru yang memadukan sirkuit kuantum variasional dengan strategi mitigasi derau seperti Zero Noise Extrapolation (ZNE), yang dirancang khusus untuk pengoptimalan dunia nyata dalam domain keuangan dan rantai pasokan. Pendekatan terpadu ini—yang menangani ketahanan kesalahan dan skalabilitas praktis secara bersamaan—hal inilah yang menjadi pembeda penelitian ini dengan studi-studi sebelumnya yang hanya berfokus pada skenario teoritis atau ideal.
Kata Kunci: Ketahanan kesalahan; Pemodelan keuangan; Algoritma hibrida; Tantangan optimasi; Komputasi kuantum; Pembelajaran mesin kuantum.
2020MSC: 81P68, 90C59, 91G60
References
Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
Shor, P. W. (1997). Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing, 26(5), 1484–1509.
Schuld, M., & Petruccione, F. (2018). Supervised Learning with Quantum Computers. Springer International Publishing.
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum Machine Learning. Nature, 549, 195–202.
Preskill, J. (2018). Quantum Computing in the NISQ Era and Beyond. Quantum, 2, 79.
Devitt, S. J. (2016). Performing Quantum Error Correction in Real Time. Physical Review A, 94(3), 032329.
Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77–91.
Chopra, S., & Meindl, P. (2015). Supply Chain Management: Strategy, Planning, and Operation. Pearson Education.
Grover, L. K. (1996). A Fast Quantum Mechanical Algorithm for Database Search. Proceedings of the 28th Annual ACM Symposium on Theory of Computing, 212–219.
Farhi, E., Goldstone, J., & Gutmann, S. (2001). A Quantum Approximate Optimization Algorithm. arXiv preprint arXiv:1411.4028.
Fowler, A. G., Mariantoni, M., Martinis, J. M., & Cleland, A. N. (2012). Surface Codes: Towards Practical Large-Scale Quantum Computation. Physical Review A, 86(3), 032324.
Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J. M., & Gambetta, J. M. (2017). Hardware-Efficient Variational Quantum Eigensolver for Small Molecules and Quantum Magnets. Nature, 549(7671), 242–246.
McClean, J. R., Romero, J., Babbush, R., & Aspuru-Guzik, A. (2016). The Theory of Variational Hybrid Quantum-Classical Algorithms. New Journal of Physics, 18(2), 023023.
Schuld, M., & Killoran, N. (2019). Quantum Machine Learning in Feature Hilbert Spaces. Physical Review Letters, 122(4), 040504.
Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum Support Vector Machine for Big Data Classification. Physical Review Letters, 113(13), 130503.
Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., ... & Coles, P. J. (2021). Variational Quantum Algorithms. Nature Reviews Physics, 3(9), 625–644.
Zhou, L., Wang, S.-T., Choi, S., Pichler, H., & Lukin, M. D. (2020). Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices. Physical Review X, 10(2), 021067.
Viola, L., & Lloyd, S. (1998). Dynamical Suppression of Decoherence in Two-State Quantum Systems. Physical Review A, 58(4), 2733–2744.
Temme, K., Bravyi, S., & Gambetta, J. M. (2017). Error Mitigation for Short-Depth Quantum Circuits. Physical Review Letters, 119(18), 180509.
Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.
Lucas, A. (2014). Ising Formulations of Many NP Problems. Frontiers in Physics, 2, 5.
Ramezanpour, A. (2021). Variational Quantum Annealing: Optimization with Quantum Fluctuations. Journal of Physics A: Mathematical and Theoretical, 54(12), 124002.
Bova, F., & Buehler, K. (2017). Quantum Advantage in Portfolio Optimization: A Practical Perspective. Journal of Quantitative Finance, 17(5), 812–831.
Durr, C., & Hoyer, P. (1996). A Quantum Algorithm for Finding the Minimum. arXiv preprint arXiv:quant-ph/9607014.
Arute, F., Arya, K., Babbush, R., et al. (2019). Quantum Supremacy Using a Programmable Superconducting Processor. Nature, 574(7779), 505–510.
Yang, J., & Ding, Y. (2021). Exploring Quantum Noise Mitigation for NISQ Devices. Quantum Information Processing, 20(2), 43.
Fu, H., & Luo, Y. (2020). Quantum Machine Learning for Multi-Objective Optimization. ACM Transactions on Quantum Computing, 1(3), 21–36.
Perdomo-Ortiz, A., Benedetti, M., Realpe-Gomez, J., & Biswas, R. (2018). Opportunities and Challenges for Quantum-Assisted Machine Learning in Near-Term Devices. Quantum Science and Technology, 3(3), 030502.
Riste, D., & DiCarlo, L. (2015). Digital Feedback in Superconducting Quantum Circuits. Nature Communications, 6, 6983.
Das, A., & Chakrabarti, B. K. (2008). Colloquium: Quantum Annealing and Analog Quantum Computation. Reviews of Modern Physics, 80(3), 1061–1081.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Milad Rahmati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.