Error-Resilient Quantum Machine Learning for Real-World Optimization Problems in Finance and Supply Chain Networks

Milad Rahmati

Abstract


The advent of quantum computing has introduced a revolutionary shift in computational paradigms, with the potential to address complex problems beyond the reach of classical systems. However, the practical deployment of quantum solutions is challenged by inherent issues such as noise and decoherence, which hinder their reliability. This study presents a novel error-resilient framework tailored for quantum machine learning (QML) to address optimization problems in finance and supply chain networks. By utilizing hybrid quantum-classical algorithms, the framework mitigates the detrimental effects of quantum noise and enhances computational robustness through advanced techniques like quantum variational circuits. Comprehensive experiments on real-world datasets highlight the framework's ability to outperform conventional methods in solving intricate optimization challenges. The findings demonstrate the transformative potential of quantum-assisted optimization for tackling critical issues in financial modeling and supply chain resilience. In this work, I propose a novel hybrid quantum-classical framework that integrates variational quantum circuits with noise mitigation strategies such as Zero Noise Extrapolation (ZNE), tailored for real-world optimization in finance and supply chain domains. This integrated approach—addressing error resilience and practical scalability together—sets the work apart from existing studies focused solely on theoretical or idealized scenarios.

Keywords: Error resilience; Financial modeling; Hybrid algorithms; Optimization challenges; Quantum computing; Quantum machine learning.

 

Abstrak

Munculnya komputasi kuantum telah memperkenalkan pergeseran revolusioner dalam paradigma komputasi, dengan potensi untuk mengatasi masalah kompleks di luar jangkauan sistem klasik. Namun, penerapan praktis solusi kuantum ditantang oleh masalah inheren seperti kebisingan dan dekoherensi, yang menghambat keandalannya. Studi ini menyajikan kerangka kerja baru mengenai ketahanan kesalahan (error-resilient) yang dirancang untuk pembelajaran mesin kuantum (QML) dalam mengatasi masalah optimasi pada jaringan keuangan dan rantai pasokan. Dengan memanfaatkan algoritma kuantum-klasik hibrida, kerangka kerja tersebut mengurangi efek merugikan dari kebisingan kuantum dan meningkatkan ketahanan komputasi melalui teknik canggih seperti sirkuit variasional kuantum. Eksperimen komprehensif pada kumpulan data dunia nyata menyoroti kemampuan kerangka kerja untuk mengungguli metode konvensional dalam memecahkan tantangan pengoptimalan yang rumit. Temuan ini menunjukkan potensi transformatif pengoptimalan berbantuan kuantum (quantum-assisted) untuk mengatasi masalah kritis dalam pemodelan keuangan dan ketahanan rantai pasokan. Pada artikel ini, kami mengusulkan kerangka kerja kuantum-klasik hibrida baru yang memadukan sirkuit kuantum variasional dengan strategi mitigasi derau seperti Zero Noise Extrapolation (ZNE), yang dirancang khusus untuk pengoptimalan dunia nyata dalam domain keuangan dan rantai pasokan. Pendekatan terpadu ini—yang menangani ketahanan kesalahan dan skalabilitas praktis secara bersamaan—hal inilah yang menjadi pembeda penelitian ini dengan studi-studi sebelumnya yang hanya berfokus pada skenario teoritis atau ideal.

Kata Kunci: Ketahanan kesalahan; Pemodelan keuangan; Algoritma hibrida; Tantangan Optimasi; Komputasi Kuantum; Pembelajaran Mesin Kuantum.

 

2020MSC: 81P68, 90C59, 91G60.


Keywords


Error resilience; Financial modeling; Hybrid algorithms; Optimization challenges; Quantum computing; Quantum machine learning

References


M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010.

P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer,” SIAM J. Comput., vol. 26, no. 5, pp. 1484–1509, 1997, doi: 10.1137/S0097539795293172.

M. Schuld and F. Petruccione, Supervised Learning with Quantum Computers. in Quantum Science and Technology. Springer, 2018. doi: 10.1007/978-3-319-96424-9.

J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195–202, 2017, doi: 10.1038/nature23474.

J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2, no. July, pp. 1–20, 2018, doi: 10.22331/q-2018-08-06-79.

S. J. Devitt, “Performing quantum computing experiments in the cloud,” Phys. Rev. A, vol. 94, no. 3, pp. 1–29, 2016, doi: 10.1103/PhysRevA.94.032329.

Harry Markowitz, “Portfolio Selection,” J. Finance, vol. 7, no. 1, pp. 77–91, 1952.

Sunil Chopra, Supply Chain Management: Strategy, Planning, and Operation, 7th ed. Pearson, 2021.

L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, in STOC ’96. New York, NY, USA: Association for Computing Machinery, 1996, pp. 212–219. doi: 10.1145/237814.237866.

E. Farhi and J. Goldstone, “A quantum approximate optimization algorithm,” Arxiv Prepr., 2014, [Online]. Available: arxiv:1411.4028

A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A, vol. 86, no. 3, p. 32324, Sep. 2012, doi: 10.1103/PhysRevA.86.032324.

A. Kandala et al., “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets,” Nature, vol. 549, no. 7671, pp. 242–246, 2017, doi: 10.1038/nature23879.

J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The theory of variational hybrid quantum-classical algorithms,” New J. Phys., vol. 18, no. 2, p. 23023, Feb. 2016, doi: 10.1088/1367-2630/18/2/023023.

M. Schuld and N. Killoran, “Quantum Machine Learning in Feature Hilbert Spaces,” Phys. Rev. Lett., vol. 122, no. 4, p. 40504, Feb. 2019, doi: 10.1103/PhysRevLett.122.040504.

P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum Support Vector Machine for Big Data Classification,” Phys. Rev. Lett., vol. 113, no. 13, p. 130503, Sep. 2014, doi: 10.1103/PhysRevLett.113.130503.

M. Cerezo et al., “Variational quantum algorithms,” Nat. Rev. Phys., vol. 3, no. 9, pp. 625–644, 2021, doi: 10.1038/s42254-021-00348-9.

L. Zhou, S. T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices,” Phys. Rev. X, vol. 10, no. 2, p. 21067, 2020, doi: 10.1103/PhysRevX.10.021067.

L. Viola and S. Lloyd, “Dynamical suppression of decoherence in two-state quantum systems,” Phys. Rev. A - At. Mol. Opt. Phys., vol. 58, no. 4, pp. 2733–2744, 1998, doi: 10.1103/PhysRevA.58.2733.

K. Temme, S. Bravyi, and J. M. Gambetta, “Error Mitigation for Short-Depth Quantum Circuits,” Phys. Rev. Lett., vol. 119, no. 18, p. 180509, Nov. 2017, doi: 10.1103/PhysRevLett.119.180509.

Stephen Boyd Lieven Vandenberghe, Convex Optimization 中文影印. 2013.

A. Lucas, “Ising formulations of many NP problems,” Front. Phys., vol. 2, no. February, pp. 1–14, 2014, doi: 10.3389/fphy.2014.00005.

A. Das and B. K. Chakrabarti, Quantum Annealing and Related Optimization Methods. Springer Berlin Heidelberg, 2005.

M. Cattelan, S. Yarkoni, and W. Lechner, “Parallel circuit implementation of variational quantum algorithms,” npj Quantum Inf., vol. 11, no. 1, p. 27, 2025, doi: 10.1038/s41534-025-00982-6.

K. Bharti et al., “Noisy intermediate-scale quantum algorithms,” Rev. Mod. Phys., vol. 94, no. 1, p. 15004, Feb. 2022, doi: 10.1103/RevModPhys.94.015004.

B. Cheng et al., “Noisy intermediate-scale quantum computers,” Front. Phys., vol. 18, no. 2, p. 21308, 2023, doi: 10.1007/s11467-022-1249-z.


Full Text: PDF

DOI: 10.15408/inprime.v7i1.44960

Refbacks