Fuzzy Unsupervised Artificial Learning Based on Credibilistic Fuzzy C-Means

Authors

  • Kangiama Lwangi Richard Department of Exploration-Production, Faculty of Oil, Gas and Renewable Energies, University of Kinshasa
  • Kafunda Katalayi Pierre Department of Mathematics, Statistics and Computer Science, Faculty of Science and Technology, University of Kinshasa
  • Kabamba Baludikay Blaise Department of Exploration-Production, Faculty of Oil, Gas and Renewable Energies, University of Kinshasa
  • Mabela Makengo Matendo Rostin Department of Mathematics, Statistics and Computer Science, Faculty of Science and Technology, University of Kinshasa
  • Munene Asidi Djonive Department of Exploration-Production, Faculty of Oil, Gas and Renewable Energies, University of Kinshasa

DOI:

https://doi.org/10.15408/b5jwzh79

Keywords:

Artificial learning, Clustering, Credibilist, Fuzzy C-means, Fuzzy logic

Abstract

This study proposes an unsupervised artificial learning approach based on the Credibilistic Fuzzy C-Means (CFCM) algorithm to enhance the governance and analysis of oil production data. The research focuses on supporting decision-making in managing oil output from the MOTOBA oil field, operated by PERENCO in Moanda, Democratic Republic of Congo, covering the period from 2018 to 2021. The methodology involves structuring and segmenting production data using the CFCM algorithm, which enables the identification of meaningful production patterns despite the presence of uncertainty and imprecision in the data. The analysis identified three distinct clusters: wells with low production, wells with moderate production, and wells with high production. These clusters offer valuable insights into the variability of well performance and provide a basis for optimizing operational strategies. The credibilistic enhancement of traditional fuzzy clustering allows for more effective handling of data uncertainty, resulting in a robust and interpretable model—particularly beneficial in complex and data-limited environments. This clustering framework supports more refined monitoring, resource allocation, and operational planning, making it well-suited for the dynamic nature of oil field management. Furthermore, the methodology demonstrates potential scalability and applicability to other industrial domains facing similar challenges in data quality and decision-making under uncertainty. Ultimately, this work contributes to the advancement of data-driven governance in natural resource management through a rigorous and adaptable analytical approach.

Keywords: Artificial learning; Clustering; Credibilist; Fuzzy C-means; Fuzzy logic.

 

Abstrak

Studi ini mengusulkan pendekatan pembelajaran buatan tanpa pengawasan berdasarkan algoritma Credibilistic Fuzzy C-Means (CFCM) untuk meningkatkan tata kelola dan analisis data produksi minyak. Penelitian ini berfokus pada dukungan pengambilan keputusan dalam mengelola produksi minyak dari ladang minyak MOTOBA, yang dioperasikan oleh PERENCO di Moanda, Republik Demokratik Kongo, yang mencakup periode 2018 hingga 2021. Metodologi ini melibatkan penataan dan segmentasi data produksi menggunakan algoritma CFCM, yang memungkinkan identifikasi pola produksi yang bermakna meskipun terdapat ketidakpastian dan ketidaktepatan dalam data. Analisis ini mengidentifikasi tiga klaster yang berbeda: sumur dengan produksi rendah, sumur dengan produksi sedang, dan sumur dengan produksi tinggi. Klaster ini menawarkan wawasan berharga tentang variabilitas kinerja sumur dan menyediakan dasar untuk mengoptimalkan strategi operasional. Peningkatan kredibilistik dari pengelompokan fuzzy tradisional memungkinkan penanganan ketidakpastian data yang lebih efektif, menghasilkan model yang kuat dan dapat ditafsirkan—terutama bermanfaat dalam lingkungan yang kompleks dan terbatas data. Kerangka pengelompokan ini mendukung pemantauan, alokasi sumber daya, dan perencanaan operasional yang lebih baik, sehingga sangat sesuai untuk sifat dinamis pengelolaan ladang minyak. Lebih jauh lagi, metodologi ini menunjukkan potensi skalabilitas dan penerapan pada domain industri lain yang menghadapi tantangan serupa dalam kualitas data dan pengambilan keputusan dalam ketidakpastian. Pada akhirnya, karya ini berkontribusi pada kemajuan tata kelola berbasis data dalam pengelolaan sumber daya alam melalui pendekatan analitis yang ketat dan adaptif.

Kata Kunci: Pembelajaran buatan; Pengelompokan; Kredibilitas; Fuzzy C-means; Logika Fuzzy.

 

2020MSC: 68T05, 62H30, 90C90.

References

Decker, P. M. Challenges in Oil and Gas Data Management. International Journal of Oil, Gas and Coal Technology, 124-136,2014.

Dempster., A. Upper and lower probabilities induced by multivalued. Annals of Mathematical Statistics,, 325–339,1967.

Dhillon, I. S. Co-clustering Documents and Words Using Bipartite Spectral Graph Partitioning. Proceedings of the 2001 SIAM International Conference on Data Mining, (pp. 1-10),2001.

El-Masri, H. A. Data Uncertainty in Oil and Gas Reservoirs: Modeling and Management. Journal of Petroleum Science and Engineering, 224-235,2014.

Frédéric. Introduction à l’apprentissage automatique. Introduction à l’apprentissage automatique. École des Mines de Nancy, France: loria,2023-2024.

Gupta, R. K. Data Analytics in the Oil and Gas Industry. Journal of Petroleum Science and Engineering, 300-310,2014.

Hossain, M. A. Research Methodology in Petroleum Engineering,. Petroleum Engineering Handbook,, 221-234,2017.

Papageorgiou, A. G. Application of Fuzzy Clustering for Oil and Gas Reservoir Characterization. SPE Annual Technical Conference and Exhibition,2014.

Al-sultan. A global algorithm for the fuzzy clustering problem. Pattern Recognition, 1357-1361,1993.

Datta, S. K. Big Data in Oil and Gas Industry: Opportunities and Challenges. Energy Procedia, 450-457,2019.

Chintalapudi, K. Algorithme de clustering flou crédible en C. Actes de la Conférence internationale de l'IEEE sur les systèmes, l'homme et la cybernétique, (pp. 2034-2038). Anglais (États-Unis),Publié-1998.

Kalechman, M. PRACTICAL MATLAB BASICS FOR ENGINEERS. France: International Standard Book Number-13,2009 .

Kennes., P. S. The transferable belief model. . Artificial Intelligence, 191–234,1994.

J.H.Holland. (1975). Adaptation in Natural and Artificial systems. university of Michigan.

Papageorgiou, A. G. (2014). Application of Fuzzy Clustering for Oil and Gas Reservoir Characterization. SPE Annual Technical Conference and Exhibition.

Afghoul, H. [Online]. Design and real time implementation of fuzzy switched controller for single phase active power filter. ISA Transactions, https://www.sciencedirect.com/science/article/abs/pii/S0019057815001767,2015.

CAPELLE1, A.-S. Quantification des images couleur par un algorithme de classification crédibiliste. ttps://scholar.google.com/citations?user=5nJ0jXQAAAAJ&hl=fr&oi=sra,2005.

Jian Su, J. S. Data Governance Facilitate Digital Transformation of Oil and Gas Industry. https://khub.utp.edu.my/,2022.

Abderrahmane. Modélisation flou basée sur les méthodes de clustering[dissertation]. Algerie: Université 8 mai,2015.

Amina, K.Implémentation de l’algorithme Fuzzy C-Means sur des ensembles de données réelles[dissertation]. Algerie: Universite Badji Mokhtar –Annaba,2023.

Khadidja, M. M. (2021). Étude comparative des deux méthodes d’évaluation objective de la qualité d’expérience audiovisuelle par Logique Floue de type 1 ettype 2. Algerie: Université Mohamed Sadik Benyahia de Jijel.

PENRECO. Rapport sur Les puits producteurs au niveau de Pinda Supérieur du champ MOTOBA. 40-45,2021.

Downloads

Published

2025-05-31

Issue

Section

Articles

How to Cite

Fuzzy Unsupervised Artificial Learning Based on Credibilistic Fuzzy C-Means. (2025). InPrime: Indonesian Journal of Pure and Applied Mathematics, 7(1), 76-87. https://doi.org/10.15408/b5jwzh79