Performance Analysis of Robust Functional Continuum Regression to Handle Outliers

Ismah Ismah, Erfiani Erfiani, Aji Hamim Wigena, Bagus Sartono

Abstract


Robust functional continuum regression (RFCR) is an innovation as a development of functional continuum regression that can be applied to functional data and is resistant to outliers. The resistance of RFCR depends on the applied weighting function. This study aims to evaluate the RFCR performance to handle outliers. We propose the various weighting functions in this evaluation, i.e., Huber, Hampel, Ramsay, and Tukey (Bisquare), which do not eliminate or give zero weight to observed data identified as outliers. This contribution is essential to determining the appropriate RFCR method without eliminating the outlier data. The result shows that the RFCR performance with the Huber weighting function is better than the others, based on the goodness of fit, consisting of the root means square error of prediction (RMSEP), the correlation between the actual data and the model, and the mean absolute error (MAE).

Keywords: functional data analysis; Huber weighted function; Hampel weighted function; Ramsay weighted function; Tukey (Bisquare) weighted function.

 

Abstrak

Regresi kontinum fungsional kekar (RFCR) merupakan inovasi yang merupakan pengembangan dari regresi kontinum fungsional yang dapat diaplikasikan pada data fungsional dan tahan terhadap outlier. Resistansi RFCR bergantung pada fungsi pembobotan. Penelitian ini bertujuan untuk mengevaluasi kinerja RFCR. Kami mengusulkan beberapa fungsi pembobotan dalam evaluasi tersebut, yaitu Huber, Hampel, Ramsay, dan Tukey (Bisquare), dengan tidak menghilangkan atau memberikan bobot nol pada data observasi yang teridentifikasi sebagai outlier. Kontribusi ini penting untuk menentukan metode RFCR yang tepat tanpa menghilangkan data outlier. Hasil menunjukkan bahwa kinerja RFCR dengan fungsi pembobotan Huber lebih baik dibandingkan fungsi pembobotan lain berdasarkan goodness of fit, yang terdiri dari root mean square error of prediksi (RMSEP), korelasi antara data aktual dan model, dan mean kesalahan absolut (MAE).

Kata Kunci: analisis data fungsional; fungsi berbobot Huber; fungsi tertimbang Hampel; fungsi tertimbang Ramsay; fungsi berbobot Tukey (Bisquare).

 

2020MSC: 62J99, 62R10


Keywords


functional data analysis; Huber weighted function; Hampel weighted function; Ramsay weighted function; Tukey (Bisquare) weighted function

References


Ramsay, James, and Giles Hooker. Dynamic data analysis, Springer New York, New York, NY, 2017.

Horváth, Lajos, and Piotr Kokoszka. Inference for functional data with applications, Vol. 200. Springer Science & Business Media, 2012.

Wang, Jane-Ling, Jeng-Min Chiou, and Hans-Georg Müller. "Functional data analysis." Annual Review of Statistics and its application, vol. 3, pp. 257-295, 2016.

Kokoszka, Piotr, and Matthew Reimherr. Introduction to functional data analysis. Chapman and Hall/CRC, 2017.

Acar Denizli, Nihan. A functional data analysis approach to remote sensing data [Thesis], Turkey: Mimar Sinan Fine Arts University, 2016.

Febrero‐Bande, Manuel, Pedro Galeano, and Wenceslao González‐Manteiga. "Functional principal component regression and functional partial least‐squares regression: An overview and a comparative study." International Statistical Review, vol. 85, no. 1, pp. 61-83, 2017.

Morettin, Pedro A., Aluísio Pinheiro, and Brani Vidakovic. Wavelets in functional data analysis. New York, NY: Springer, 2017.

Somvanshi, Madan, et al. "A review of machine learning techniques using decision tree and support vector machine." 2016 international conference on computing communication control and automation (ICCUBEA). IEEE, 2016.

Caprarelli, Graziella, and Stephanie Fletcher. "A brief review of spatial analysis concepts and tools used for mapping, containment and risk modelling of infectious diseases and other illnesses." Parasitology, vol. 141, no. 5, pp. 581-601, 2014.

Stone, Mervyn, and Rodney J. Brooks. "Continuum regression: cross‐validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression." Journal of the Royal Statistical Society: Series B (Methodological), vol. 52, no. 2, pp. 237-258, 1990

Modi, Krishna, and Bhavesh Oza. "Outlier analysis approaches in data mining." International Journal of Innovative Research in Technology, vol. 3, no. 7, pp. 6-12, 2016.

de Cheveigné, Alain, and Dorothée Arzounian. "Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data." NeuroImage, vol. 172, pp. 903-912, 2018.

Yazici, Murat. "The weighted least squares ratio (WLSR) method to M-estimators." 2016 SAI Computing Conference (SAI). IEEE, 2016.

Muthukrishnan, R., and S. Kalaivani. "Robust Weighted Support Vector Regression Approach for Predictive Modeling." Indian Journal of Science and Technology, vol. 16, no. 30, pp. 2287-2296,2023.

Banaś, Marek; Ligas, Marcin. “Empirical tests of performance of some M–estimators,” Geodesy and Cartography, Vol. 63, No 2, pp. 127-146, 2014.

Deria, Aulia Desy, Abdul Hoyyi, and Mustafid Mustafid. "Regresi Robust Estimasi-M Dengan Pembobot Andrew, Pembobot Ramsay Dan Pembobot Welsch Menggunakan Software R." Jurnal Gaussian, vol. 8, no. 3, pp. 377-388, 2019.

Yazici, Murat. "A new approach called weighted least squares ratio (WLSR) method to M estimators." Journal of Information Sciences and Computing Technologies, vol. 5, no. 1, pp. 399-414, 2015.

Zhou, Zhiyang. "Functional continuum regression." Journal of Multivariate Analysis, vol. 173, pp. 328-346, 2019.

Nawaz, Shahbaz, et al. “Comparison Of Robust Estimator In Case Of Outliers”. Webology (ISSN: 1735-188X), vol. 19, no. 2, 2022.

Pratiwi, Hasih; Susanti, Yuliana; Handajani, Sri Sulistijowati. “A robust regression by using Huber estimator and Tukey bisquare estimator for predicting availability of corn in Karanganyar regency, Indonesia”. Indonesian Journal of Applied Statistics, vol.1, no.1, pp. 37-44, 2018.


Full Text: PDF

DOI: 10.15408/inprime.v6i1.38928

Refbacks

  • There are currently no refbacks.