Point and Figure Portfolio Optimization using Hidden Markov Models and Its Application on the Bumi Resources Tbk Shares

Kastolan Kastolan, Berlian Setiawaty, N. K. Kutha Ardana

Abstract


Abstract

The problem of portfolio optimization is to select a trading strategy which maximizes the expected terminal wealth. Since the stocks are traded at discrete random times in a real-world market, we are interested in a time sampling method. The sampling of stock price is obtained from the process of time sampling which is used in a point and figure chart. Point and figure (PF) chart displays the up and down movements of unbalanced stock prices. The basic idea is to describe essential movements of the unbalanced stock prices using a hidden Markov model. The model parameters are transition probability matrices. They are estimated using maximum likelihood method and expectation maximization algorithm. The estimation procedure involves change of measure. The model is then applied to the stock price of Bumi Resources Tbk. collected on a daily basis. The estimated parameters are used to calculate the optimal portfolio using a recursive algorithm. The results show that the discrete hidden Markov model can be applied to describe essential movements of the stock price. The best result gives 93.63% accuracy of the estimate of observation sequence with mean absolute percentage error (MAPE) 3.63%. The numerical calculation shows that the optimal logarithmic PF-portfolio increases the wealth.

Keywords: point and figure portfolio; optimization portfolio; discrete hidden Markov model; expectation maximization algorithm; stock price of Bumi Resources Tbk.

 

Abstrak

Masalah pengoptimalan portofolio adalah pemilihan strategi perdagangan yang dapat memaksimalkan kekayaan terminal yang diharapkan. Karena di pasar dunia nyata, saham diperdagangkan pada waktu acak yang berbeda, sehingga kami tertarik pada metode pengambilan sampel waktu. Proses pengambilan sampel waktu diperoleh sampling harga saham yang digunakan dalam diagram point and figure (PF-chart). Grafik point and figure hanya menampilkan pergerakan naik atau turun harga saham yang tidak seimbang. Ide dasarnya adalah untuk mendeskripsikan pergerakan esensial dari harga saham yang tidak seimbang menggunakan model hidden Markov. Parameter dari model ini adalah matriks probabilitas transisi. Parameter diestimasi menggunakan metode maximum likelihood dan algoritma expectation maximization. Prosedur estimasi melibatkan perubahan ukuran. Model ini kemudian diaplikasikan pada harga saham Bumi Resources Tbk. dari tanggal 2 Januari 2007 sampai dengan 31 Januari 2011. Hasil estimasi parameter tersebut digunakan untuk menghitung portofolio optimal menggunakan algoritma rekursif. Hasil penelitian ini menunjukkan bahwa model hidden Markov diskrit dapat diterapkan untuk menggambarkan pergerakan esensial dari harga saham. Model terbaik memberikan akurasi 93.63% dari estimasi deretan observasi dengan mean absolute percentage error (MAPE) 3,63% dan 5 faktor penyebab kejadian. Perhitungan numerik menunjukkan bahwa logaritma portofolio-PF yang optimal dapat meningkatkan kekayaan.

Kata kunci: portofolio point and figure; optimalisasi portofolio; model hidden Markov diskrit; algoritma expectation maximization; harga saham PT Bumi Resources.

Keywords


point and figure portfolio; optimization portfolio; discrete hidden Markov model; expectation maximization algorithm; stock price of Bumi Resources Tbk.

References


Z. Bodie, A. Kane and A. J. Marcus, Investments, 5th ed., Boston : Mc Graw Hill, 2005.

L. Salim, Analisis Teknikal dalam Perdagangan Saham, Jakarta: PT Elex Media Komputindo Kelompok Gramedia, 2003.

R. J. Elliot and J. Van-der Hoek, "An application of hidden markov model to asset allocation problems," Journal of Finance and Stochastics, vol. 1, pp. 229-238, 1997.

C. Landen, "Bond pricing in a hidden markov model of the short rate," Journal Finance and Stochastics, vol. 4, pp. 371-389, 2000.

S. D. Campbell, Regime Switching in Economics, University of Pennsylvania: Dissertation, 2002.

R. J. Elliot and J. Hinz, "Portfolio optimization, hidden markov models, and technical analysis of P&F-charts," International Journal of Theoretical and Applied Finance, vol. 5, pp. 385-399, 2011.

H. Y. and X. Wang, "Portfolio selection with a hidden markov model," Quality Technology and Quantitative Managmenet, vol. 11, pp. 167-174, 2014.

E. Canakoglu and S. Ozekici, "Portfolio selection with imperfect information: a hidden markov model," Applied Stochastic Models in Business and Industry, vol. 27, pp. 95-114, 2011.

N. Nguyen, "Hidden markov model for stock trading," International Journal of Financial Studies, vol. 6, no. 2, pp. 1-17, 2018.

R. Sasikumar and A. S. Abdullah, "Forecasting the stock market values using hidden markov model," International Journal of Business Analytics and Intelligence, vol. 4, no. 1, pp. 17-21, 2016.

R. Langrock, T. A. Marques, R. W. Baird and L. Thomas, "Modeling the diving behavior of whales: a latent-variable approach with feedback and semi-markovian components," Journal of Agriculture Biological and Environmental Statistics, vol. 19, no. 1, pp. 82-100, 2013.

I. Visser, M. E. J. Raijmakers and P. C. M. Molenaar, "Fitting hidden markov models to psychological data," Scientific Programming, vol. 10, pp. 185-199, 2002.

L. R. Rabiner, "A tutorial on hidden markov models and selected applications on speech recognition," Proceedings of the IEEE, vol. 77, no. 2, 1989.

I. Ramlall, Applied Technical Analysis for Advanced Learners and Practitioners: In Chart We Trust, UK: Emerald, 2017.

Nasdaq, "Point and Figure Basics," [Online]. Available: https://www.nasdaq.com/docs/DWA-Point-Figure-Basics_0.pdf. [Accessed 2 February 2020].

T. J. Dorsey, Point and Figure Charting, 3th ed., New York: John Willey & Sons, 2007.


Full Text: PDF

DOI: 10.15408/inprime.v3i1.19376

Refbacks

  • There are currently no refbacks.