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Abstract  
Solving multi-objective linear programming problems (MOLPP) is a great challenge because it is 
essential in many real-life problems, especially manufacturing. Choosing the best solution is the goal of 
the decision-maker to produce a possibility to improve their ability to decide. Multi-dimensional scaling 
(MDS) gives this capability to the right decision. In this study, we develop the MDS method for 

(MOLPP) in the work of Mrakhan et al. (2020). The method depends on embedding points in  𝑅2. 
Start by building a matrix from a collection of points, and then use clustering to optimize the matrix 

dimensions and configure the points in 𝑅2. The matrix has (𝑘1 × 2) dimensions, where 𝑘1 is the big 
cluster of the points. Also, a center of points was used to find the scaling points, and then the center of 

the generated points was used to find a distance from the origin (0, 0). Our proposed algorithm offers 
a structured, efficient compromise solution for MOLPPs, outperforming traditional scalarization-based 
methods. 
Keywords: Comprise solution; Multi-dimensional scaling; Multi-objective linear programming; 
Optimal advanced; Optimal average; Quadratic average. 

 
Abstrak 

Menyelesaikan masalah pemrograman linier multiobjektif (MOLPP) merupakan tantangan besar karena sangat 
penting dalam banyak masalah kehidupan nyata, terutama manufaktur. Memilih solusi terbaik adalah tujuan pembuat 
keputusan untuk menciptakan kemungkinan guna meningkatkan kemampuan mereka dalam mengambil keputusan. 
Penskalaan multidimensi (MDS) memberikan kemampuan ini untuk keputusan yang tepat. Pada studi ini, akan 
dikembangkan metode MDS untuk (MOLPP) dalam karya Mrakhan et al. (2020). Metode ini bergantung pada 

penyematan titik-titik di 𝑅2: dimulai dengan membangun matriks dari kumpulan titik, lalu gunakan pengelompokan 

untuk mengoptimalkan dimensi matriks dan mengonfigurasi titik-titik di 𝑅2. Matriks memiliki dimensi (𝑘1 × 2), 

dimana 𝑘1 adalah klaster besar titik-titik. Selain itu, titik pusat digunakan untuk menemukan titik penskalaan, 

kemudian titik pusat tersebut digunakan untuk menemukan jarak dari titik asal (0, 0). Algoritma yang kami 
usulkan menawarkan solusi kompromi yang terstruktur dan efisien untuk MOLPP, yang mengungguli metode berbasis 
skalarisasi tradisional. 
Kata Kunci: Solusi terpadu; Skala multidimensi; Pemrograman linier multiobjektif; Lanjutan optimal; Rata-rata 
optimal; Rata-rata kuadratik. 
 
2020MSC: 90C29, 90C90. 
 
 

1. INTRODUCTION 

One of the most critical areas of optimization is multi-objective linear programming (MOLP), 
which deals with decision-making issues involving several frequently incompatible objectives [1]. The 
primary purpose is to find a solution that achieves these objectives. Efficiently offering a variety of 
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mailto:*ayad.ramadan@univsul.edu.iq


A Multidimensional Approach for Solving Multi-Objective Linear Programming Problems 

67 | InPrime: Indonesian Journal of Pure and Applied Mathematics 
 

Pareto-optimal alternatives to decision-makers. Numerous industries, including economics, 
engineering, environmental planning, logistics, and healthcare, have used MOLP substantially since 
its beginnings [1][2]. Although conventional approaches such as scalarization and transformation 
techniques have established groundwork for resolving these issues, difficulties still exist, especially 
when working with large-scale, dynamic, and uncertain systems. In recent years, especially from 2021 
to 2024, there have been notable developments in MOLP's theoretical and computational facets.  

Mrakhan et al. [3] presented a novel method to improve the accuracy and efficiency of solving 
MOLP problems. Likewise, Md. Abdul Alim and Marzia Yesmin [4] created a cutting-edge 
transformation methodology that enhanced the adaptability and scalability of current MOLP 
methods, highlighting its use intricate optimization scenarios, including network design and resource 
allocation. These pioneering investigations have added new approaches using probabilistic models 
and machine learning. The investigation of hybrid Bayesian optimization by Dogan and Prestwich [5] 
offers a strong framework for dealing with bi-level MOLP problems, especially when there is 
uncertainty and a hierarchical decision-making process. Q-learning and deep Q-networks are 
reinforcement learning approaches used to optimize goals dynamically. Their application in wind 
turbine management, where these techniques balance energy production with noise reduction, is a 
noteworthy example [6].  

To improve the placement of healthcare facilities, for example, Davoodi and Calabrese [7] used 
bi-objective integer linear programming models, addressing essential societal requirements, including 
reducing commute time and guaranteeing task parity throughout institutions. Similarly, current 
evaluations of telecommunication network optimization emphasize the application of multi-objective 
algorithms to strike a balance between cost, latency, and reliability to guarantee peak performance in 
quickly changing digital infrastructures [8][9].  

The improvement of methods has been another crucial area of advancement. At the same time, 
[10] and  offered average approaches for tackling MOLP problems utilizing multiple mean strategies. 
Studies by Sulaiman and Mustafa [11] have used harmonic means to improve the previous methods. 
In this paper, we presented a novel method to improve the results of all the previous work using the 
multi-dimensional scaling (MDS) method. 

2. METHODS 

To illustrate the main ideas and concepts, we start with the following definitions:  

Definition 1. [12] Let 𝑅𝑛 = {𝑥1, … , 𝑥𝑛}: 𝑥𝑗 ∈ 𝑅 for 𝑗 = {1,… , 𝑛}. Then �⃗� = [ 𝑥1, … , 𝑥𝑛]𝑡 is called a 

vector of 𝑛 dimension. 

Definition 2. [13] The numbers or values of the elements in a vector are called scalars. 

Definition 3. [14] MDS is one of the dimensionality reduction techniques that convert 
multidimensional data into lower-dimensional space while keeping the intrinsic information. 

Definition 4. [15] Cluster analysis is an exploratory data analysis tool for organizing observed data 
or cases into two or more groups. 
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2.1. Multi-objective Programming Problems Formulation 

Subject to certain limitations, the mathematical model can be constructed in the following way 
to maximize (minimize) many objectives simultaneously: 

𝑀𝑎𝑥. 𝑍𝑖 = 𝑐𝑖
𝑡𝑥 + 𝛽𝑖   𝑖 = 1,… , 𝑟,  

𝑀𝑖𝑛. 𝑍𝑖 = 𝑐𝑖
𝑡𝑥 + 𝛽𝑖    𝑖 = 𝑟 + 1,… , 𝑟1,                                            (1) 

 𝑠. 𝑡. 
 𝑋 > 0, 

where 𝑋 is vector of n-dimension, 𝑐 is constant vector of n-dimension, 𝛽 is constant vector of m-
dimension, 𝑟 is number of maximized objective functions, 𝑟1 is number of maximized plus minimized 

objectives, (𝑟1 − 𝑟) is number of minimized objectives, 𝑐𝑖
𝑡𝑥 + 𝛽𝑖   𝑖 = 1,… , 𝑟1 linear factors for feasible 

solutions, and 𝛽𝑖  ( 𝑖 = 1,… , 𝑟1) are scalars. Since the objective functions with constraints are linear 
and all the variables are continuous, the problem is called a multi-objective linear programming 
problem (MOLPP) [16]. 

2.2. Classical Multidimensional Scaling (MDS) 

The proximity between observations to visualize their spatial representation is called 
multidimensional scaling [17]. Start with an (G × G) dissimilarity matrix 𝐷. To represent the 𝐺 points 
in a low dimension, where the distances 𝑑𝑖𝑗 between them near the original δij means 𝑑𝑖𝑗 = δij for all 

𝑖, 𝑗 [18]. One can formulate most MDS problems in terms of the optimization problem. A linear 
programming model for external analysis is presented [18][19]. Brusco proposed integer 
programming methods for the one-dimensional scaling of proximity matrices [20]. Laeuter and 
Ramadan [21] and [22] used optimization techniques to configure categorical data.  

2.3. The Principal Concept 

The first step in the strategy is to use the simplex method to maximize or minimize each goal 
function separately. The ideal values are  

𝑀𝑎𝑥 𝑍1  =  𝜔1, 
𝑀𝑎𝑥 𝑍2  =  𝜔2, 
⋮ 
𝑀𝑎𝑥 𝑍𝑟  =  𝜔𝑟 , 
𝑀𝑖𝑛 𝑍𝑟+1  =  𝜔𝑟+1, 
⋮ 
𝑀𝑖𝑛 𝑍𝑟1  =  𝜔𝑟1 . 

To form a single objective function and for maximum adding and for minimum subtracting of each 

result of dividing each 𝑧𝑖 by 𝜔𝑖, where |ωi| ≠ 0i, i.e., 𝑀𝑎𝑥 𝑍 =  ∑
𝑍𝑖

|ωi|
− ∑

𝑍𝑖

|ωi|
 

𝑟1
𝑖=𝑟+1

𝑟
𝑖=1  [10] and subject 

to the same constraints in (1). All the presented methods aim to minimize the value of 𝜔𝑖; different 
techniques were used to find a value from 𝜔𝑖 (𝑖 =  1, … , 𝑟1) and denote this value by 𝜌. Note that as 
much as ωi is small, the results are better. We have 𝑟1 objective functions with a bounded feasible 
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region. To solve this problem, we used the optimal values of 𝑟1 objective functions to find a new 
compromise objective function. This solution lies in the same feasible region of (1) [23].  

The algorithm below characterizes the values of the objective functions individually, and then 
we construct ordered pairs that come from the Cartesian product (CP) of maximum and minimum 

values. Plot them in 𝑅2. So, the points are visualized together in 𝑅2. The big cluster means that the 
distances between the points are small. This gives the idea to choose it. Choosing a big cluster is 
reasonable for this purpose. Let the cluster contain 𝑔1 points. Now, the dimension of D is (𝑔1 × 2), 
a matrix of the points of the cluster. Find the configuration points by MDS that are good 
approximations of the distances between the rows of 𝐷 [18][19]. From these points, we find the center 
point, and then 𝜌 is the distance between the origin and center points.   

 
2.4. The Algorithm 

Step 1: Plot the CP of individual values of  𝑀𝑎𝑥. 𝑍1 and  𝑀𝑖𝑛. 𝑍1, 
Step 2: Choose the big cluster with 𝑔1 elements. Construct a matrix 𝐷 of dimension (𝑔1 × 2), 

Step 3: Find a Euclidian distance  𝐸 = [𝑑𝑖𝑗], 𝑖, 𝑗 = 1,… , 𝑔1, 

Step 4: 𝐴 = −0.5 × [𝑑𝑖𝑗
2 ], 

Step 5: 𝐵 = (𝐼 −
1

𝑔1
𝐽 ) × 𝐴, (𝐼 −

1

𝑔1
𝐽 ) where 𝐼 is the identity matrix and 𝐽 is the unit matrix, both of 

dimension (𝑔1 × 𝑔1). 
Step 6: 𝜆𝑖 and 𝑣𝑖 are eigenvalues and eigenvectors, respectively, for 𝐵. Choose two largest eigenvalues. 

Step 7: 𝑆 = (√𝜆1 𝑣1, √𝜆1 𝑣2), the coordinates of the points. 

Step 8: Find the center point 𝑆∗, then 𝜌 is the distance between (0, 0) and 𝑆∗. 

Note that we considered two eigenvalues to configure the points in 𝑅2. For details of the algorithm, 
see [18]. 

3. RESULTS 

To demonstrate the effectiveness and applicability of the proposed multidimensional approach 
in solving MOLPP, we present several numerical examples. These examples are solved using our 
method and are compared with results obtained using established methods in the literature. 

Example 1: Solve the following (MOLPP) 
 

𝑀𝑎𝑥. 𝑍1 = 3𝑥1+ 2𝑥2 

𝑀𝑎𝑥. 𝑍2 = 4𝑥1+ 𝑥2 

  𝑀𝑎𝑥. 𝑍3 = 4𝑥1 − 2𝑥2 

  𝑀𝑎𝑥. 𝑍4 = 15𝑥1+ 4𝑥2 

  𝑀𝑖𝑛. 𝑍5 = −6𝑥1+ 2𝑥2 

  𝑀𝑖𝑛. 𝑍6 = −9𝑥1+ 3𝑥2 

  𝑀𝑖𝑛. 𝑍7 = −5𝑥1+ 2𝑥2 
 

subject to                                     
𝑥1+ 𝑥2 ≤ 4 

𝑥1 − 𝑥2 ≤ 2 

𝑥1, 𝑥2 ≥ 0. 
Solution:  
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By the simplex method, the optimal values are 𝑍1 = 11, 𝑍2 = 13, 𝑍3 = 10, 𝑍4 = 49, 𝑍5 = −16, 𝑍6 =
−24, and 𝑍7 = −13. So, the Cartesian product is the set 𝑆 =
{(11,−16), (11,−24), (11,−13), (13,−16), (13,−24), (13,−13), (10,−16), ( 10, −24), ( 10, −13),  
( 49, −16), (49,−24), (49,−13)}. There are 12 elements. The plots are shown in Figure 1. From the 
graph below, we choose 

 

Figure 1. Cartesian products of example 1 

The points in the big cluster are (11,−16), (11,−24), (11,−13), (13,−16), (13,−24), (13,−13), 

 (10, −16), ( 10, −24), ( 10, −13). So, the matrix 𝐷 is 

𝐷 = (
11 11 11 13 13 13 10 10 10

−16 −24 −13 −16 −24 −13 −16 −24 −13
)
𝑡

, 

and   

𝐸 = [𝑑𝑖𝑗] =

(

 
 
 
 
 
 

0 8 3 2 8.2 3.6 1 8 3.2
8 0 11 8.2 2 11.2 8 1 11
3 11 0 3.6 11.2 2 3.2 11 1
2 8.2 3.6 0 8 3 3 8.5 4.2

8.2 2 11.2 8 0 11 8.5 3 11.4
3.6 11.2 2 3 11 0 4.2 11.4 3
1 8 3.2 3 8.5 4.2 0 8 3
8 1 11 8.5 3 11.4 8 0 11

3.2 11 1 4.2 11.4 3 3 11 0 )

 
 
 
 
 
 

. 

 

Now,  𝐴 = −0.5 × [𝑑𝑖𝑗
2 ] 

 

𝐴 =

(

 
 
 
 
 
 

0 −32 −4.5 −2 −34 −6.5 −0.5 −32.5 −5
−32 0 −60.5 −34 −2 −62.5 −32.5 −0.5 −61
−4.5 −60.5 0 −6.5 −62.5 −2 −5 −61 −0.5
−2 −34 −6.5 0 −32 −4.5 −4.5 −36.5 −9
−34 −2 −62.5 −32 0 −60.5 −36.5 −4.5 −65
−6.5 −62.5 −2 −4.5 −60.5 0 −9 −65 −4.5
−0.5 −32.5 −5 −4.5 −36.5 −9 0 −32 −4.5
−32.5 −0.5 −61 −36.5 −4.5 −65 −32 0 −60.5
−5 −61 −0.5 −9 −65 −4.5 −4.5 −60.5 0 )

 
 
 
 
 
 

, 
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and 𝐵 = (𝐼 −
1

9
𝐽 ) × 𝐴, (𝐼 −

1

9
𝐽 ) which is  

(

 
 
 
 
 
 

2.8889 −10.4444    7.8889  2.2222 −11.1111 7.2222. 3.2222 −10.1111 8.2222
−10.4444    40.2222 −29.4444 −11.1111 39.5556 −30.1111 −10.1111 40.5556 −29.1111

7.8889  −29.4444 21.8889 7.2222 −30.1111  21.2222 8.2222  −29.1111 22.2222
    2.2222  −11.1111  7.2222 5.5556 −7.7778 10.5556 0.5556 −12.7778  5.5556
−11.1111 39.5556 −30.1111 −7.7778 42.8889 −26.7778 −12.7778 37.8889  −31.7778
7.2222   −30.1111 21.2222 10.5556 −26.7778   24.5556  5.5556  −31.7778  19.5556

     3.2222  −10.1111 8.2222 0.5556 −12.7778    5.5556  4.5556 −8.7778  9.5556
−10.1111   40.5556 −29.1111 −12.7778 37.8889 −31.7778 −8.7778   41.8889 −27.7778

8.2222 −29.1111 22.2222 5.5556   −31.7778 19.5556  9.5556 −27.7778 23.5556 )

 
 
 
 
 
 

 

The largest eigenvalues of 𝐵 are  𝜆1 = 194, 𝜆2 =  14, with the corresponding eigenvectors 

𝑉1 = [0.1197   − 0.4547   0.3350 0.1197    − 0.4547   0.3350   0.1197  − 0.4547   0.3350]t 

𝑉2 = [ 0.0891   0.0891  0.0891   − 0.4454   − 0.4454   − 0.4454   0.3563   0.3563  0.3563],
t

 

respectively. The coordinates of the points are 

𝑆 =

(

 
 
 
 
 
 

√194 ×

[
 
 
 
 
 
 
 
 

0.1197
−0.4547
0.3350
0.1197

−0.4547
0.3350
0.1197

−0.4547
0.3350 ]

 
 
 
 
 
 
 
 

, √14 ×

[
 
 
 
 
 
 
 
 

0.0891
0.0891
0.0891

−0.4454
−0.4454
−0.4454
0.3563
0.3563
0.3563 ]

 
 
 
 
 
 
 
 

      

)

 
 
 
 
 
 

=

(

 
 
 
 
 
 

1.667
−6.333
4.666
1.667

−6.333
4.666
1.667

−6.333
4.666

  

0.333
0.333
0.333

−1.666
−1.666
−1.666
1.333
1.333
1.333 )

 
 
 
 
 
 

 

So, we have 9 points in 𝑅2, find the center point, say 𝑆∗ = (�̅�, 𝑦)̅̅ ̅ = (
∑ 𝑥𝑖

9
𝑖=1

9
,
∑ 𝑦𝑖

9
𝑖=1

9
) =

(2.9000 × 10−16, 3.3333 × 10−5),  and the distance between 𝑆∗ and the origin (0,0) is ρ =  0.00003   
which is our divided factor. Therefore 

Zoptimal
∗ = 453333.3     at    x1 = 3 , x2 = 1. 

Example 2: Solve the following (MOLPP) 

𝑀𝑎𝑥. 𝑍1 = 4𝑥1+ 2𝑥2 

  𝑀𝑎𝑥. 𝑍2 = 3𝑥1+ 6𝑥2 

    𝑀𝑎𝑥. 𝑍3 = −8𝑥1 + 6𝑥2 

𝑀𝑖𝑛. 𝑍4 = 5𝑥1 − 7𝑥2 

  𝑀𝑖𝑛. 𝑍5 = 2𝑥1 − 8𝑥2, 
 

subject to                                               
2𝑥1+ 6𝑥2 ≤ 10 

4𝑥1 − 2𝑥2 ≤ 4 

𝑥1, 𝑥2 ≥ 0. 
 
Solution:  
By the simplex method, the optimal values are 𝑍1 = 8.5, 𝑍2 = 11.57,  𝑍3 = 10,  𝑍4 = −11.6, and        

 𝑍5 = −13.3. So, the Cartesian product is the set  𝑆 =  {(8.5,−11.6), (8.5,−13.3), ( 11.57,−11.62),  
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(11.57,−13.3), (10,−11.6), (10,−13.3)}. From Figure 2, we choose the big cluster. 

 

Figure 2. Cartesian products of example 2 

The  points  in  the  big  cluster  are  all the points:  {(8.5,−11.6), (8.5,−13.3), ( 11.57,−11.62), 

(11.57,−13.3), (10,−11.6), (10,−13.3)}. The matrix 𝐷 is  

𝐷 = (
8.5 8.5 11.57 11.57 10 10

−11.6 −13.3 −11.62 −13.3 −11.6 −13.3
)
t

, 

and 

𝐸 = [𝑑𝑖𝑗] =

(

 
 
 

0  1.73 3.09 4.8 1.5 3.2
1.73 0 4.78 3.07 3.23 1.53
3.09  4.78 0 1.71 1.59 3.25
4.8 3.07 1.71 0 3.3 1.6
1.5 3.23 1.59 3.3 0 1.7
3.2 1.53 3.25  1.6 1.7 0 )

 
 
 

. 

Now,   𝐴 = −0.5 × [𝑑𝑖𝑗
2 ] 

𝐴 =

(

  
 

0 −1.4965 −4.774 −11.52 −1.125 −5.12
−1.4965         0 −11.4242 −4.7125 −5.2165  −1.1704

−4.774  −11.4242 0 −1.4621 −1.264 −5.2813
−11.52   −4.7125   −1.4621 0 −5.4450 −1.28
−1.1250    −5.2165 −1.264 −5.445 0 −1.445

−5.12 −1.1704  −5.2813 −1.28 −1.445 0 )

  
 

, 

and 𝐵 = (𝐼 −
1

6
𝐽 ) × 𝐴, (𝐼 −

1

6
𝐽 ) = 

(

  
 

3.0659  1.5723 −1.6280  −3.1043 0.7809 −0.6868
 1.5723  3.0717 −3.0869 −1.6050 −0.7127 0.7606 
−1.6280 −3.0869   3.1034 1.6613 0.6920 −0.7417
 −3.1043  −1.6050 1.6613 3.1433 −0.7843 0.6890
  0.7809  −0.7127  0.6920 −0.7843 0.7459  −0.7218

 −0.6868 0.7606 −0.7417 0.6890 −0.7218 0.7006 )

  
 

. 

The largest eigenvalues of B are  𝜆1 = 9.4267   , 𝜆2 = 4.4039, with the corresponding eigenvectors 

𝑉1 = [  0.4979  0.4944  − 0.5020  − 0.5055    0.0094   0.0059]t, 
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𝑉2 = [ 0.4068  − 0.4175  0.4065  − 0.4083   0.4113  − 0.3987]t
 

respectively. The coordinates of the points are 

𝑆 =

(

  
 

√9.4267 ×

[
 
 
 
 
 

0.4979
0.4944

−0.5020
−0.5055
0.0094
0.0059 ]

 
 
 
 
 

, √4.4039 ×

[
 
 
 
 
 

0.4068
−0.4175
0.4065

−0.4083
0.4113

−0.3987]
 
 
 
 
 

    

)

  
 

=

(

 
 
 

1.528
1.517

−1.541
−1.552
0.028
0.018

  

0.853
−0.876
0.853

−0.856
0.863

−0.836)

 
 
 

. 

So, we have 6 points in 𝑅2, find the center point, 𝑆∗ = (−0.002, 0.001), and the distance between 𝑆∗ 
and the origin (0, 0)  is 𝜌 =  0.00022, which is our divided factor. Therefore 

Zoptimal
∗ = 142156.861    at  x1 = 0  , x2 =

5

3
 .  

In the following Table 1, we compare the results obtained by quadratic average, optimal advanced 
transformation, optimal average, multi-dimensional scaling. 

Table 1. Comparison of different methods 

Examples Quadratic 
Average 

Optimal Advanced 
Transformation 

Optimal 
average 

MDS 

Example 1 Z∗ = 6.04 

x1 = 3, x2 = 1 

Z∗ = 13.6 

x1 = 3, x2 = 1 

Z∗ = 11.82 

x1 = 3 , x2 = 1 

Z∗ = 453333 

x1 = 3 , x2 = 1 

Example 2 Z∗ = 4.313 

x1 = 0 , x2 =
5

3
 

Z∗ = 5.685 

x1 = 0 , x2 =
5

3
 

Z∗ = 4.808 

x1 = 0,  x2 =
5

3
 

Z∗ = 142156 

x1 = 0, x2 =
5

3
 

Notes:  
1. If the objective functions are all in max case, then the Cartesian products will be in real line. In 

this case the problem is easier to solve. 
2. As much as the cluster is big (contains most of the points), then the result is better. Otherwise, 

the Zoptimal
∗  is small. 

 

4. DISCUSSION 

The proposed multidimensional scaling (MDS) method offers significant improvements over 
several prior approaches to solving multi-objective linear programming problems (MOLPP). For 
instance, compared to the transformation technique by [4] and [24], the MDS method integrates spatial 
and geometric information through clustering and scaling. This makes it more intuitive for decision-
makers, especially in complex decision environments where multiple competing objectives must be 
reconciled visually and computationally. 

Furthermore, while the average-based strategies proposed by [11][25] and improved by [10], they 
lack a graphical interpretation and do not capture the spatial relationships between feasible solutions. 
The MDS-based approach introduced in this study addresses this limitation by mapping solutions into 
a lower-dimensional Euclidean space, allowing the identification of central compromise points with 
preserved relative distances. This visualization capability makes the MDS approach more insightful, 
particularly when identifying Pareto-optimal clusters. 

The algorithm also contrasts with the optimization-based methods by Mrakhan et al. [3] and 
Dogan and Prestwich [5], which focus on bilevel and probabilistic frameworks. While these methods 
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are effective in hierarchical or uncertain environments, they often require extensive computational 
resources and model-specific adjustments. In contrast, the MDS approach balances computational 
efficiency with solution interpretability. By incorporating eigenvalue decomposition and cluster 
analysis, it generates compromise solutions that not only satisfy the mathematical rigor but also 
enhance decision clarity across a wide range of practical applications. 

5. CONCLUSIONS 

We have studied MOLPP by using MDS. This method converts the cartesian products of the 

optimal values for the objective functions to the points in 𝑅2. This method keeps the distances 
between the points. The results show a significant difference compared with other methods, as shown 
in Table 1. 
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