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Abstract  
The advent of quantum computing has introduced a revolutionary shift in computational paradigms, 
with the potential to address complex problems beyond the reach of classical systems. However, the 
practical deployment of quantum solutions is challenged by inherent issues such as noise and 
decoherence, which hinder their reliability. This study presents a novel error-resilient framework 
tailored for quantum machine learning (QML) to address optimization problems in finance and supply 
chain networks. By utilizing hybrid quantum-classical algorithms, the framework mitigates the 
detrimental effects of quantum noise and enhances computational robustness through advanced 
techniques like quantum variational circuits. Comprehensive experiments on real-world datasets 
highlight the framework's ability to outperform conventional methods in solving intricate optimization 
challenges. The findings demonstrate the transformative potential of quantum-assisted optimization for 
tackling critical issues in financial modeling and supply chain resilience. In this work, I propose a novel 
hybrid quantum-classical framework that integrates variational quantum circuits with noise mitigation 
strategies such as Zero Noise Extrapolation (ZNE), tailored for real-world optimization in finance and 
supply chain domains. This integrated approach—addressing error resilience and practical scalability 
together—sets the work apart from existing studies focused solely on theoretical or idealized scenarios. 
Keywords: Error resilience; Financial modeling; Hybrid algorithms; Optimization challenges; Quantum 
computing; Quantum machine learning. 

 
Abstrak 

Munculnya komputasi kuantum telah memperkenalkan pergeseran revolusioner dalam paradigma komputasi, dengan 
potensi untuk mengatasi masalah kompleks di luar jangkauan sistem klasik. Namun, penerapan praktis solusi 
kuantum ditantang oleh masalah inheren seperti kebisingan dan dekoherensi, yang menghambat keandalannya. Studi 
ini menyajikan kerangka kerja baru mengenai ketahanan kesalahan (error-resilient) yang dirancang untuk 
pembelajaran mesin kuantum (QML) dalam mengatasi masalah optimasi pada jaringan keuangan dan rantai pasokan. 
Dengan memanfaatkan algoritma kuantum-klasik hibrida, kerangka kerja tersebut mengurangi efek merugikan dari 
kebisingan kuantum dan meningkatkan ketahanan komputasi melalui teknik canggih seperti sirkuit variasional 
kuantum. Eksperimen komprehensif pada kumpulan data dunia nyata menyoroti kemampuan kerangka kerja untuk 
mengungguli metode konvensional dalam memecahkan tantangan pengoptimalan yang rumit. Temuan ini menunjukkan 
potensi transformatif pengoptimalan berbantuan kuantum (quantum-assisted) untuk mengatasi masalah kritis dalam 
pemodelan keuangan dan ketahanan rantai pasokan. Pada artikel ini, kami mengusulkan kerangka kerja kuantum-
klasik hibrida baru yang memadukan sirkuit kuantum variasional dengan strategi mitigasi derau seperti Zero Noise 
Extrapolation (ZNE), yang dirancang khusus untuk pengoptimalan dunia nyata dalam domain keuangan dan rantai 
pasokan. Pendekatan terpadu ini—yang menangani ketahanan kesalahan dan skalabilitas praktis secara bersamaan—
hal inilah yang menjadi pembeda penelitian ini dengan studi-studi sebelumnya yang hanya berfokus pada skenario teoritis 
atau ideal. 
Kata Kunci: Ketahanan kesalahan; Pemodelan keuangan; Algoritma hibrida; Tantangan optimasi; Komputasi 
kuantum; Pembelajaran mesin kuantum. 
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1. INTRODUCTION 

Quantum computing represents a groundbreaking shift in computational capabilities, offering the 
potential to tackle challenges previously deemed intractable by classical computers. Unlike traditional 
systems, which process information using binary bits, quantum systems utilize quantum bits (qubits) 
that operate through principles like superposition and entanglement. These unique properties allow 
quantum computers to process specific types of problems exponentially faster, making them highly 
attractive for fields such as cryptography, complex optimization, drug development, and machine 
learning [1][2]. 

Among these applications, quantum machine learning (QML) stands out as a field of growing 
importance. By combining the mathematical frameworks of quantum mechanics with machine 
learning methodologies, QML opens pathways to address computational bottlenecks in data-heavy 
domains. Industries such as finance and supply chain management, which depend on solving large-
scale optimization problems, are particularly well-positioned to benefit. These sectors demand 
algorithms capable of processing intricate relationships within massive datasets and delivering 
efficient, timely solutions, challenges that quantum computing is uniquely suited to overcome [3][4]. 

1.1. Challenges in Realizing Quantum Computing 

Despite its promise, quantum computing faces significant obstacles that limit its adoption. The 
inherent fragility of qubits, which are highly susceptible to environmental noise and operational errors, 
poses a critical barrier. Current quantum systems, classified as Noisy Intermediate-Scale Quantum 
(NISQ) devices, lack the robust error correction needed for fault-free computation [5][6]. These 
constraints make it essential to develop error-tolerant algorithms that can function within the 
limitations of present-day hardware. 

1.2. Real-World Relevance of Optimization Problems 

Optimization tasks are at the core of many critical industries, including finance and supply chain 
management. Financial institutions rely on optimization models for portfolio diversification, risk 
modeling, and fraud detection, while supply chain operations depend on efficient routing, inventory 
control, and dynamic distribution planning [7][8]. However, classical optimization techniques are often 
hindered by the exponential growth in complexity as datasets increase in size. Quantum optimization 
algorithms, leveraging the inherent parallelism of quantum computing, provide an alternative that 
promises to address these computational challenges more efficiently. 

1.3. Purpose and Scope of This Research 

This paper aims to bridge the gap between the theoretical advancements in quantum machine 
learning and its practical applications, particularly in solving real-world optimization problems. The 
primary objectives are (1) to design a hybrid quantum-classical framework that improves noise 
resilience by incorporating advanced quantum variational circuits; (2) to evaluate the framework’s 
performance on practical optimization challenges in finance and supply chain networks using real-
world datasets; and (3) to assess the scalability and robustness of the proposed approach, 
demonstrating its potential for broader applicability. 

In terms of novelty, this research introduces a unified hybrid quantum-classical optimization 
framework that combines real-world dataset validation with formal quantum algorithmic design. The 
integration of Zero Noise Extrapolation (ZNE), adaptive circuit depth selection, and domain-specific 
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Hamiltonian modeling addresses a key gap in current quantum machine learning research. Unlike prior 
studies that remain limited to synthetic benchmarks or theoretical performance, my framework 
emphasizes applied, noise-aware quantum optimization in high-impact sectors like finance and supply 
chain systems. 

1.4. Organization of the Paper 

The structure of this paper is as follows: Section 2 explores the existing body of research on 
quantum computing, optimization, and machine learning. Section 3 introduces the proposed 
methodology, detailing the theoretical underpinnings and algorithmic developments. Section 4 
outlines the experimental setup and results, including comprehensive analyses presented through 
tables and figures. Section 5 provides a discussion of the findings, their implications, and limitations. 
Finally, Section 6 concludes the paper and suggests future directions for continued exploration. 

1.5. Quantum Computing and the Problem of Noise 

Quantum computing leverages the principles of quantum mechanics, such as superposition and 
entanglement, to process information in fundamentally new ways. By using qubits, quantum 
computers can explore multiple solutions simultaneously, making them particularly effective for 
specific problems, such as integer factorization using Shor’s algorithm and database searching with 
Grover’s algorithm [1][2][9][10]. Despite these theoretical breakthroughs, the practical implementation 
of quantum systems faces considerable challenges. 

One of the primary obstacles is noise, which arises from qubit decoherence and operational 
inaccuracies. Such noise reduces computational reliability, particularly in Noisy Intermediate-Scale 
Quantum (NISQ) devices. While quantum error correction and fault-tolerant architectures have been 
proposed to address these issues, their implementation demands significant resources in terms of qubit 
overhead, which current hardware cannot support [5][6][11]. Consequently, alternative methods, such 
as hybrid quantum-classical algorithms, are being explored to harness the power of quantum systems 
without requiring full fault tolerance [12][13]. 

1.6. Advances in Quantum Machine Learning 

Quantum machine learning (QML) combines quantum computing with machine learning 
techniques to address computational challenges that are difficult for classical systems. Quantum 
algorithms for machine learning tasks, such as quantum-enhanced support vector machines and 
quantum neural networks, have demonstrated potential advantages in processing high-dimensional 
data and reducing computational time [14][15]. 

However, the application of QML is not without limitations. Most algorithms are constrained by 
hardware inefficiencies and the susceptibility of quantum systems to noise. To overcome these 
challenges, researchers have turned to variational quantum algorithms (VQAs), which utilize 
parameterized quantum circuits optimized through classical computation. Examples include the 
Variational Quantum Eigensolver (VQE) for chemistry simulations and the Quantum Approximate 
Optimization Algorithm (QAOA) for solving combinatorial problems [16][17]. These algorithms are 
specifically designed to perform well on NISQ devices, although their real-world applicability remains 
limited due to scalability concerns. 
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1.7. Optimization in Finance and Supply Chain Networks 

Optimization is a cornerstone of operational decision-making in both finance and supply chain 
management. In the financial sector, optimization models support tasks such as portfolio 
management, risk analysis, and fraud detection. Traditional methods, such as linear programming and 
Monte Carlo simulations, often fall short when addressing the scalability and complexity inherent in 
modern financial systems [18][19][20]. 

Similarly, supply chain networks rely heavily on optimization for logistics, inventory control, and 
demand forecasting. Real-world scenarios often involve dynamic and uncertain conditions, which 
classical optimization techniques struggle to address effectively. Quantum optimization algorithms, 
including QAOA, offer a promising approach to solving these large-scale, combinatorial problems 
with greater efficiency [21]. Nonetheless, the noise and error challenges associated with NISQ devices 
need to be mitigated to unlock their full potential in practical settings [22]. 

1.8. Research Gaps and Challenges 

While quantum computing and QML have shown significant promise, several gaps hinder their 
widespread adoption (1) susceptibility to Noise: Current quantum algorithms remain highly sensitive 
to environmental noise, limiting their effectiveness on existing quantum hardware [5][13]; (2) limited 
Scalability: Most QML methods have been tested only on small-scale or synthetic datasets, leaving 
their real-world potential unexplored, especially in industries like finance and supply chain 
management [14][18]; and (3) hybrid framework development: Although hybrid quantum-classical 
approaches have gained attention, comprehensive frameworks tailored to specific optimization 
challenges are still lacking [16][21]. 

1.9. Contributions of This Work 

The present study addresses these challenges by proposing an error-resilient framework for 
quantum machine learning, specifically designed to tackle optimization problems in finance and supply 
chain management. The key contributions of this research include (1) development of a hybrid 
quantum-classical algorithm that integrates advanced techniques for noise mitigation, and (2) 
validation of the proposed framework on real-world datasets, demonstrating its scalability and 
robustness. Presentation of a novel approach to bridge the gap between theoretical quantum 
algorithms and their practical application in critical domains. 

2. METHODS 

This section outlines the methodology employed to develop the proposed error-resilient quantum 
machine learning (QML) framework for solving real-world optimization problems in finance and 
supply chain networks. The methodology includes theoretical foundations, algorithmic design, noise 
mitigation strategies, and implementation details, emphasizing innovation and scientific rigor. 

Quantum computing relies on the principles of quantum mechanics, such as superposition, 
entanglement, and interference, to solve complex problems. In this framework, we build on these 
principles by employing hybrid quantum-classical algorithms, where quantum systems perform the 
computationally intensive tasks, and classical systems handle optimization. 

Optimization problems are often formulated as minimization or maximization tasks of an 
objective function 𝑓(𝑥) over a set of constraints 𝑔𝑖(𝑥). In a quantum framework, the optimization 
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problem can be expressed as finding the ground state of a Hamiltonian 𝐻, which corresponds to the 
minimum energy configuration: 

 𝐻 = ∑ 𝑐𝑖𝑖 𝑃𝑖, (1) 

where 𝑃𝑖 are tensor products of Pauli operators, and 
ic  are real coefficients derived from the problem's 

constraints and objective function [16][17]. For example, the traveling salesman problem (TSP), an 
NP-hard optimization task in supply chain management, can be mapped to a quantum Hamiltonian 
by encoding paths as qubit states and formulating penalties for invalid routes. 

Variational Quantum Algorithms leverage parameterized quantum circuits (PQCs) to 
approximate the ground state of a Hamiltonian. The energy expectation value of the trial state |𝜓(𝜃)⟩, 
defined by the parameters 𝜃, is minimized iteratively: 

 𝐸(𝜃) = ⟨𝜓(𝜃)|𝐻|𝜓(𝜃)⟩, (2) 

The optimal parameters 𝜃∗ minimize 𝐸(𝜃), approximating the solution to the optimization         
problem [16][23]. 

2.1. Framework Design 

The proposed framework integrates variational quantum algorithms with advanced noise 
mitigation techniques and hybrid optimization workflows. The design is tailored to address the 
challenges of NISQ devices and enhance the practical applicability of QML. 

2.1.1. Hybrid Quantum-Classical Architecture 
The proposed framework adopts hybrid architecture in which the quantum processor is 

responsible for modeling and evaluating quantum states, while the classical processor performs 
iterative parameter optimization. This structure is designed to take advantage of quantum parallelism 
for state-space exploration and classical reliability for optimization convergence. The quantum 
component encodes problem instances into parameterized circuits that represent candidate solutions, 
while the classical loop evaluates and updates these parameters to minimize a cost function. This 
synergy enables practical computation on noisy intermediate-scale quantum (NISQ) devices, ensuring 
adaptability across different domains such as finance and supply chain networks [24][25]. A detailed 
step-by-step algorithm, from problem encoding to error-mitigated post-processing, is provided in 
Section 2.4. 

2.1.2. Quantum Noise Mitigation 
To address noise issues in NISQ devices, the framework employs: 

(1) Error Mitigation via Zero Noise Extrapolation (ZNE): Introduce artificial noise during 
computation and extrapolate results to a zero-noise limit: 

 𝐸noiseless ≈ 2𝐸(𝜆) − 𝐸(2𝜆), (3) 

where   is the noise scaling factor. 
(2) Dynamical Decoupling: Apply sequences of control pulses to counteract decoherence effects and 

preserve qubit states [18][19]. 
(3) Error-Aware Optimizers: Incorporate noise characteristics into the optimization algorithm, 
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dynamically adjusting learning rates and evaluation metrics. 

2.2. Novelty of the Approach 

The innovation of this framework lies in its ability to integrate error mitigation with domain-
specific optimization techniques. Key contributions include: 
(1) Adaptive Circuit Design: Dynamically adjust circuit depth based on hardware noise profiles to 

balance expressivity and robustness. 
(2) Multi-Objective Optimization: Extend single-objective VQAs to handle multiple conflicting 

objectives using Pareto front analysis: 

Minimize: {𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥)}.        (4) 

(3) Domain-Specific Customization: Tailor optimization formulations for specific applications in 
finance (e.g., portfolio optimization) and supply chain networks (e.g., demand forecasting). 

2.3. Algorithm Workflow and Implementation 

This section outlines the full workflow implemented in the proposed framework. The steps 
proceed from early data processing and mathematical problem modeling, through to quantum circuit 
construction, iterative optimization, and final post-processing. All quantum operations are performed 
on NISQ-compatible devices, and classical routines are used for parameter optimization and 
benchmarking. 

The primary algorithmic workflow is detailed below, combining quantum and classical 
components: 
(1) Data Processing and Feature Selection: 

Raw datasets from the target domain (e.g., historical stock data or logistics records) are 
preprocessed using standard methods such as normalization, outlier removal, and dimensionality 
reduction. The relevant features (e.g., asset returns, risk covariance, supply quantities) are 
extracted and formatted to serve as inputs for Hamiltonian construction. 

(2) Problem Encoding: 
Encode the optimization problem into a Hamiltonian using problem-specific mappings. For 

instance, binary variables in classical problems correspond to qubit states (|0⟩ and |1⟩). For 
portfolio optimization in finance:  

 𝐻 = − ∑ 𝑟𝑖𝑖 𝑧𝑖 + ∑ 𝑞𝑖𝑗𝑖,𝑗 𝑧𝑖𝑧𝑗,     (5) 

where 𝑟𝑖 is the return on asset 𝑖, 𝑞𝑖𝑗 represents risk covariance, and 𝑧𝑖 ∈ {0,1} indicates asset 

selection. 
(3) Circuit Construction: 

Design a parameterized quantum circuit with layers of single-qubit rotations ( )YR   and 

controlled gates CNOT : 
 

𝑈(𝜃) = ∏ ∏ 𝑅𝑌
(𝑖)

𝑖𝑙 (𝜃𝑙,𝑖) ⋅ ∏ CNOT𝑗,𝑘𝑗,𝑘 .          (6) 
 

Increase circuit depth iteratively to enhance expressivity. 
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(4) Optimization Loop:  

• Measure the expectation value of H  for the trial state generated by the quantum circuit. 

• Use a classical optimizer to adjust parameters   to minimize ( )E  . 

(5) Post-Processing: 

• Apply error mitigation techniques (e.g., ZNE) to refine the results. 

• Validate the final solution against classical benchmarks. 

In this work, two variational quantum algorithms were employed—Variational Quantum Eigensolver 
(VQE) and Quantum Approximate Optimization Algorithm (QAOA)—to solve the mapped 
optimization problems. 

Rationale for Algorithm Selection: 
For the core quantum component of this framework, I employed Variational Quantum 

Eigensolver (VQE) and Quantum Approximate Optimization Algorithm (QAOA) due to their 
compatibility with Noisy Intermediate-Scale Quantum (NISQ) devices and their proven effectiveness 
in constrained optimization scenarios. VQE is particularly suitable for problems that require 
evaluating a cost function's minimum energy configuration, which aligns well with portfolio 
optimization, where the goal is to minimize risk while maximizing returns. On the other hand, QAOA 
is naturally suited for combinatorial optimization tasks, such as logistics and routing challenges in 
supply chain networks, because it models solutions as bitstrings and optimizes their configurations 
over time. Compared to classical solvers like simulated annealing or linear programming, these 
variational algorithms offer a quantum-enhanced solution space exploration, which can lead to better 
local optima and faster convergence, especially as problem dimensionality increases. Additionally, 
these algorithms are adaptable in terms of circuit depth and can incorporate problem-specific 
Hamiltonians, making them ideal for noisy hardware with limited qubit coherence time. 

2.4. Implementation Details 
 

The framework was implemented using IBM’s Qiskit and Google’s Cirq libraries. Real-world 
datasets were used for testing, including:  
1) Finance: Historical stock data for portfolio optimization (e.g., S&P 500 companies). 
2) Supply Chain: Logistics datasets from the UCI Machine Learning Repository. 

The experiments were conducted on IBM Quantum Experience and Google Sycamore hardware, with 
simulations on classical systems for comparison. 

2.5.  Performance Metrics 
 

The performance of the proposed framework was evaluated using: (1) convergence rate: time to 
reach the optimal solution; (2) noise tolerance: accuracy of results under varying noise levels; and (3) 
scalability: performance on datasets of increasing size. 

2.6. Mathematical Validation 
 

To validate the accuracy and feasibility of the proposed methods, the results were benchmarked 
against classical optimization techniques using statistical metrics: 

Mean Absolute Percentage Error:   MAPE =
1

𝑛
∑ |

Actual𝑖−Predicted𝑖

Actual𝑖
|𝑛

𝑖=1 × 100%. (7) 
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The mathematical properties of the framework were further tested by simulating noisy environments, 
measuring fidelity as: 

 Fidelity = |⟨𝜓ideal|𝜓noisy⟩|2.           (8) 

3. RESULTS 

In this section This section presents the outcomes of the proposed error-resilient quantum 
machine learning (QML) framework. The results are discussed in terms of performance, scalability, 
robustness, and comparative benchmarks against classical methods. Experiments were conducted on 
both simulated quantum environments and physical NISQ hardware to validate the framework's 
practical applicability. 

3.1. Experimental Setup 

The experiments were designed to evaluate the framework's performance across two domains: 
finance (portfolio optimization) and supply chain management (demand forecasting). The datasets 
and hardware used are summarized in Table 1. 

Table 1. Experimental setup overview 
 

Domain Dataset Task Quantum Hardware Classical Baseline 

Finance Historical S&P 500 data Portfolio optimization IBM Quantum, Google 
Sycamore 

Simulated Annealing 

Supply Chain UCI Logistics dataset Demand forecasting 
optimization 

Rigetti Quantum 
Processor 

Genetic Algorithms 

 
Dataset Selection Criteria: 

(1) Relevance to domain-specific optimization tasks – the S&P 500 dataset is widely used in finance 
research for portfolio selection and risk modeling, while the UCI Logistics dataset reflects real-
world supply chain scenarios. 

(2) Availability and openness – both datasets are publicly accessible and well-documented, ensuring 
reproducibility. 

(3) Data richness and complexity – each dataset includes multiple variables and constraints, making 
them suitable for testing the performance of hybrid quantum-classical optimization algorithms 
under realistic conditions. 
Common benchmarks – these datasets are commonly referenced in both classical and emerging 

quantum optimization literature, allowing for comparative evaluation. 

3.2. Portfolio Optimization in Finance 

The proposed framework was applied to a portfolio optimization task, where the objective was 
to maximize returns while minimizing risk, subject to budget constraints. The problem was encoded 
as a quadratic unconstrained binary optimization (QUBO) problem. 

The quantum framework demonstrated superior convergence properties compared to classical 
algorithms. Figure 1 shows the convergence of the hybrid quantum-classical approach versus 
simulated annealing. To evaluate noise mitigation strategies, experiments were conducted under 
varying noise levels. The Zero Noise Extrapolation (ZNE) method significantly improved accuracy, 
as shown in Figure 2. 
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The scalability of the proposed framework was tested on portfolio sizes ranging from 10 to 100 
assets. The results, summarized in Table 2, indicate that the framework maintains competitive 
performance even as the problem size increases. 

 
Table 2. Performance metrics for portfolio optimization tasks 

 

Portfolio Size Quantum Framework (MAPE) Classical Baseline (MAPE) 

10 Assets 5.2% 6.8% 
50 Assets 7.1% 9.3% 
100 Assets 9.6% 12.4% 

 

 
Figure 1. Convergence of hybrid quantum vs. classical optimization algorithms 

 

 

Figure 2. Effect of noise mitigation on portfolio optimization accuracy 

3.3. Demand Forecasting in Supply Chain Networks 

For the supply chain domain, the framework was applied to demand forecasting optimization. 
The goal was to minimize transportation costs while ensuring inventory availability across multiple 
locations. Figure 3 compares the optimization performance of the proposed framework against 
genetic algorithms. The quantum approach achieves lower costs for larger datasets. 

The robustness of the quantum framework was assessed under varying noise intensities. Figure 4 
illustrates the fidelity of the quantum solution as noise levels increase. Table 3 highlights the 



Error-Resilient Quantum Machine Learning for Real-World Optimization Problems in Finance and … 

61 | InPrime: Indonesian Journal of Pure and Applied Mathematics 
 

computational time required for both quantum and classical approaches, demonstrating that the 
hybrid framework offers significant speedups for large-scale problems. 

 

 
Figure 3. Optimization cost reduction for supply chain networks 

 

Table 3. Computational time for supply chain optimization 
 

Problem Size Quantum Framework 
(Seconds) 

Classical Baseline 
(Seconds) 

Small (10 Nodes) 5.4 9.8 
Medium (50 Nodes) 18.7 42.3 
Large (100 Nodes) 52.4 139.2 

 
The following visualizations illustrate the framework’s performance across domains. Figure 1 

convergence: quantum algorithms reach the optimal solution faster than classical methods. The hybrid 
approach effectively balances computational load between quantum and classical systems. Figure 2: 
noise mitigation: the accuracy improvement achieved by noise mitigation techniques like ZNE is 
evident. ZNE effectively reduces the impact of errors, enabling reliable optimization even under high-
noise conditions. Figure 3: cost reduction: the quantum framework achieves consistent cost 
reductions, particularly for large datasets in supply chain optimization. And Figure 4: noise robustness: 
the fidelity measurements indicate that the quantum framework maintains solution accuracy even as 
noise levels increase. 

 

 
Figure 4. Fidelity of quantum solutions under noise 
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4. DISCUSSION 

This section provides an in-depth analysis of the results, contextualizing them within the broader 
scope of quantum computing research and real-world optimization challenges. The findings are 
critically examined in terms of their implications, limitations, and potential avenues for future 
advancements. 

4.1. Implications of the Results 

The results demonstrate the effectiveness of the proposed error-resilient quantum machine 
learning (QML) framework in addressing optimization problems in finance and supply chain 
networks. Key implications include: 
1. Enhanced Optimization Efficiency: The hybrid quantum-classical architecture consistently 

outperformed classical algorithms in terms of convergence rate and solution quality. For instance, 
in portfolio optimization, the quantum framework achieved a lower Mean Absolute Percentage 
Error (MAPE) compared to simulated annealing across multiple problem sizes (see Table 2). This 
highlights the potential of quantum algorithms to handle large-scale, high-dimensional 
optimization tasks more effectively than traditional methods. 

2. Noise Mitigation Strategies: The integration of Zero Noise Extrapolation (ZNE) and dynamical 
decoupling significantly improved the robustness of the framework. The results in Figure 2 
illustrate that noise mitigation not only enhances accuracy but also ensures reliability in NISQ 
environments. This capability is critical for bridging the gap between theoretical quantum 
algorithms and their practical deployment on current quantum hardware. 

3. Scalability Across Domains: The scalability experiments revealed that the framework can maintain 
competitive performance as the problem size increases, both in terms of dataset size (finance) 
and network complexity (supply chain). These findings suggest that hybrid quantum-classical 
approaches are well-suited for real-world applications where problem sizes frequently exceed 
classical computational limits. 

4.2. Comparison with Existing Research 

The performance and robustness of the proposed framework align with and extend the findings 
of previous studies. The first is quantum optimization performance. Prior research has demonstrated 
the potential of Quantum Approximate Optimization Algorithm (QAOA) in solving combinatorial 
problems [16] [17]. However, our results indicate that integrating advanced noise mitigation 
techniques can further enhance the accuracy and applicability of QAOA-based frameworks. 

The second is hybrid approaches. The superiority of hybrid quantum-classical methods over 
purely quantum or classical systems has been emphasized in recent studies [13][18]. Our framework 
adds to this body of knowledge by demonstrating its efficacy on domain-specific, real-world tasks. 
And the last is domain-specific applications. Unlike earlier work, which primarily focused on synthetic 
benchmarks, this study validates the framework using real-world datasets from finance and supply 
chain management. This contributes to bridging the gap between theoretical quantum computing 
advancements and their application in critical industries. 

4.3. Limitations of the Study 
 

Despite its promising results, the study is subject to several limitations: 
1. Hardware Constraints: The experiments were conducted on NISQ devices, which are inherently 
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limited by qubit count, coherence time, and error rates. While noise mitigation strategies 
improved reliability, the framework’s performance may vary significantly on larger quantum 
systems or future fault-tolerant hardware. 

2. Computational Overheads: Hybrid approaches often involve iterative feedback loops between 
quantum and classical components. This can introduce additional computational overhead, 
particularly for large-scale problems with numerous iterations. 

3. Domain-Specific Adaptability: Although the framework was successfully applied to finance and 
supply chain problems, its adaptability to other domains remains unexplored. Further validation 
is needed to assess its generalizability to fields such as healthcare, energy, and logistics. 

4.4. Future Directions 

Building on the findings and limitations of this study, several areas warrant further exploration: 
1. Advancing Noise Mitigation: As quantum hardware continues to evolve, refining noise mitigation 

techniques remains a priority. Future work could explore machine learning-driven noise 
prediction models to further enhance the reliability of quantum computations. 

2. Expanding Domain Applications: The framework should be extended and validated across 
diverse domains. For instance, applications in climate modeling, drug discovery, and energy 
optimization could benefit from similar hybrid quantum-classical approaches. 

3. Integration with Emerging Technologies: Integrating quantum frameworks with other emerging 
technologies, such as blockchain for secure supply chain management or AI for predictive 
analytics, could unlock new synergies. These interdisciplinary approaches could significantly 
broaden the scope and impact of quantum computing. 

4. Exploring Fault-Tolerant Systems: As fault-tolerant quantum computers become more accessible, 
the framework should be adapted to take advantage of their advanced capabilities. This would 
enable testing on larger, more complex datasets without the constraints of noise and limited 
coherence time. 

4.5. Broader Implications 

The successful application of the proposed framework to real-world problems in finance and 
supply chain management highlights its potential to address global challenges. For instance: (1) in 
finance, the ability to optimize portfolios under complex constraints could enhance investment 
strategies and risk management; and (2) in supply chain networks, improved forecasting and cost 
reduction could contribute to greater efficiency and sustainability, particularly in resource-constrained 
environments. Moreover, the hybrid approach demonstrated in this study could serve as a blueprint 
for other researchers and practitioners, accelerating the adoption of quantum computing in industry. 

5. CONCLUSIONS 

The development and implementation of an error-resilient quantum machine learning (QML) 
framework, as presented in this study, marks a significant step toward harnessing the potential of 
quantum computing for real-world optimization challenges. This paper addresses critical limitations 
of current quantum computing technologies, particularly noise sensitivity and scalability, by integrating 
advanced noise mitigation techniques and hybrid quantum-classical algorithms. 

The proposed framework was validated through rigorous experimentation in two key domains: 
finance and supply chain management. The results demonstrated: (1) enhanced optimization 
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performance: the hybrid quantum-classical approach outperformed traditional optimization methods, 
achieving faster convergence and improved solution accuracy; (2) robustness to noise: noise mitigation 
strategies such as Zero Noise Extrapolation (ZNE) and dynamical decoupling significantly improved 
the reliability of quantum computations; and (3) scalability across problem sizes: the framework 
maintained competitive performance as the complexity of optimization problems increased, 
highlighting its applicability to large-scale, real-world tasks. 

This study contributes to the growing body of research on quantum computing by developing a 

novel framework that addresses both theoretical and practical challenges in QML, demonstrating the 

application of quantum optimization algorithms to domain-specific problems using real-world 

datasets, and establishing a pathway for bridging the gap between current NISQ devices and their 

practical deployment in critical industries. 

Building on this research, future studies should focus on the following directions: 

1. Exploring Fault-Tolerant Hardware: As quantum systems evolve, the framework can be adapted 

to fully fault-tolerant devices, enabling larger and more complex computations. 

2. Expanding Domain Applications: Validation of the framework in areas such as healthcare, energy 

optimization, and environmental modeling could broaden its impact. 

3. Interdisciplinary Integration: Combining quantum computing with other emerging technologies, 
such as artificial intelligence and blockchain, could unlock new possibilities for innovation. 
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