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Abstract  
Naive Bayes classification, grounded in Bayes' theorem, is a well-established probabilistic and statistical 

method. However, it often faces challenges when dealing with datasets that have skewed class 

distributions. A common issue with unbalanced data is that the classifier tends to predict the majority 

class more accurately, leading to high accuracy for the majority class but low accuracy for the minority 

class. Resampling techniques such as oversampling, undersampling, or a combination of both can be 

employed to address this. This research introduces a novel approach to balancing training data using a 

hybrid method that combines SMOTE (Synthetic Minority Oversampling Technique) and Tomek Links 

by applying this method to tuberculosis (TB) diagnosis data from Mayjend HM Ryacudu Kotabumi 

Hospital. We evaluate the Naive Bayes classifier's performance on the original and newly balanced data.  

We used 826 patient data for training and 207 for testing out of 1,033. Of the 826 records in the training 

dataset, 306 patients had a TB diagnosis, whereas 520 patients did not. To achieve a better balance 

between the majority and minority classes, we oversampled 214 data in the minority class to match the 

number in the majority class. If necessary, we also reduce 214 data from the majority class. The results 

demonstrate that this hybrid approach significantly enhances the performance of the Naive Bayes model 

in terms of data balancing and overall accuracy. Specifically, the hybrid method achieves an average 

specificity of 96%, sensitivity of 88%, false positive fraction (FPF) of 4%, and false negative fraction 

(FNF) of 12%. These findings highlight the effectiveness of combining SMOTE and Tomek Links, 

providing a robust solution for improving classification performance in unbalanced datasets.  

Keywords: Naive Bayes classification; SMOTE; Tomek Links; SMOTE+Tomek Links; tuberculosis. 
 

Abstrak 
Klasifikasi Naive Bayes, yang didasarkan pada Teorema Bayes, adalah metode probabilistik dan statistik yang sudah 
mapan. Namun, metode ini sering menghadapi tantangan ketika berhadapan dengan kumpulan data yang memiliki 
distribusi kelas yang miring (tidak seimbang). Masalah umum pada data yang tidak seimbang adalah bahwa 
pengklasifikasi cenderung memprediksi kelas mayoritas dengan lebih akurat, yang mengarah pada akurasi tinggi untuk 
kelas mayoritas namun menghasilkan akurasi rendah untuk kelas minoritas. Untuk mengatasi masalah ini, teknik 
resampling seperti oversampling, undersampling, atau kombinasi keduanya dapat digunakan. Penelitian ini 
memperkenalkan pendekatan baru untuk menyeimbangkan data pelatihan menggunakan metode hibrida yang 
menggabungkan SMOTE (Synthetic Minority Oversampling Technique) dan Tomek Links. Dengan 
menerapkan metode ini pada data diagnosis tuberculosis (TB) dari Rumah Sakit Mayjend HM Ryacudu Kotabumi. 
Kami mengevaluasi kinerja pengklasifikasi Naive Bayes pada data yang tidak seimbang asli dan data yang sudah 
seimbang. Kami menggunakan 826 data pasien untuk pelatihan dan 207 untuk pengujian dari total 1.033. Dari 826 
catatan dalam dataset pelatihan, 306 pasien didiagnosis dengan TB, sedangkan 520 pasien tidak. Untuk mencapai 
keseimbangan yang lebih baik antara kelas mayoritas dan minoritas, kami melakukan oversampling sebanyak 214 
data pada kelas minoritas agar jumlahnya seimbang dengan kelas mayoritas. Selain itu, kami juga mengurangi 214 
data dari kelas mayoritas. Hasilnya menunjukkan bahwa pendekatan hibrida ini secara signifikan meningkatkan 
kinerja model Naive Bayes dalam hal keseimbangan data dan akurasi keseluruhan. Secara spesifik, metode hibrida 
ini mencapai spesifisitas rata-rata sebesar 96%, sensitivitas sebesar 88%, fraksi positif palsu (FPF) sebesar 4%, dan 
fraksi negatif palsu (FNF) sebesar 12%. Temuan ini menyoroti efektivitas penggabungan SMOTE dan Tomek 
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Links, serta memberikan solusi yang tangguh untuk meningkatkan kinerja klasifikasi pada kumpulan data yang tidak 
seimbang. 
Kata Kunci: klasifikasi Naive Bayes; SMOTE; Tomek Links; SMOTE+Tomek Links; tuberkulosis. 
 
2020MSC: 68T05, 62R07. 
 

1. INTRODUCTION 

Naive Bayes classification method is a machine learning technique that uses probability and 
statistics to infer future probabilities from prior experiences known as Bayes' Theorem which was 
developed by the English scientist Reverend Thomas Bayes. Following the theorem classification has 
been further developed by researchers in machine learning [1]. Naive Bayes has many advantages, 
including speed, efficiency, and performance in various classification tasks. For this reason, Naive 
Bayes is still a popular method in many areas of machine learning, such as text categorization, 
healthcare diagnosis, and managing system performance [2]. 

There is often an uneven distribution among classes in datasets that are used by researches. 
Unbalanced data occurs when there is a huge disparity in the number of training samples between two 
classes, with a large number of samples representing the majority class and a small number of samples 
representing the minority class [3]. A common problem with imbalanced data is that classification 
tends to predict the class with a larger data composition. As a result, prediction accuracy is high for 
the majority class data, while it is poor for the minority class data [4]. One method to address 
imbalanced data is through resampling techniques. Resampling is a preprocessing technique that 
algorithmically equalizes class distributions to improve the imbalance ratio and reduce the effects of 
imbalanced class distribution in machine learning processes. Resampling techniques can be performed 
using oversampling, undersampling, and hybrid methods [5][6]. 

The minority class is the target of oversampling, which aims to bring their numbers closer to the 
majority class by repeatedly sampling from the minority class [7]. One method that helps to even out 
data is the Synthetic Minority Oversampling Technique (SMOTE). It does this by making up instances 
of the minority class to obtain statistical parity [8]. To ensure the dataset is balanced, undersampling 
lowers the number of observations from the majority class [9].  Undersampling using Tomek Links 
involves excluding data from the majority class that has comparable traits [10]. Hybrid techniques 
address imbalanced data by combining oversampling and undersampling techniques [11]. By 
combining these two techniques, a dataset is expected to avoid excessive information loss, i.e. a 
negative effect of undersampling, and overfitting, i.e. a negative effect of oversampling. One such 
hybrid technique is SMOTE + Tomek Links [12]. 

The healthcare industry often deals with imbalanced data. Many tasks in healthcare rely on Naive 
Bayes classification, such as illness diagnostics, risk assessment, and outcome prediction. Its simplicity 
and efficiency make it particularly suitable for medical applications where rapid decision-making is 
based on probabilistic models [13]. Regarding the tuberculosis (TB) situation in Indonesia, as of 
January 2nd 2024, there are estimated to be approximately 1,060,000 TB cases. Data from 2023 show 
the detection of 792,404 TB cases, indicating an annual increase. In response to the high number of 
TB cases, a movement  of TB prevention was established in Indonesia, an approach aimed at finding, 
diagnosing, treating, and curing TB patients with the primary goal of stopping the transmission of the 
disease in the community [14].  
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In comparison to previous research, our study offers several distinctive features that enhance the 
understanding of imbalanced data in TB diagnosis. While Tyagi et al. [5], explored various methods, 
including K-Nearest Neighbors and Support Vector Machines, they identified the ADASYN method 
as the most effective for data balancing. However, our research diverges by specifically implementing 
SMOTE, Tomek Links, and their hybrid combination (SMOTE+Tomek Links) within the context of 
Naive Bayes classification. This approach aims to tackle the dual challenges of overfitting associated 
with oversampling and information loss due to undersampling. 

Additionally, previous studies, such as those by Sastrawan et al. [3], assessed combined sampling 
methods but did not focus on the unique challenges posed by healthcare datasets, particularly in TB 
diagnostics. Our research not only emphasizes the necessity for accurate classification in medical 
applications but also incorporates a detailed analysis of multiple factors, including gender, age, 
smoking status, body mass index (BMI), and family history of TB, which are critical for improving 
diagnostic accuracy. 

Moreover, the healthcare landscape in Indonesia, characterized by approximately 1,060,000 TB 
cases as of January 2024, underscores the urgency of our work. By focusing on these specific factors 
and employing advanced hybrid resampling techniques, our study seeks to fill the gap in the existing 
literature regarding effective TB diagnosis in imbalanced datasets. This differentiation highlights the 
potential for our methods to provide a more robust solution in the face of real-world challenges 
associated with TB detection and management. 

 
2. METHODS 

The data used in this study is notably medical records of TB diagnoses collected from Mayjend 
HM Ryacudu Kotabumi Hospital. The data is available from January to December 2023. There were 
1,033 people tested for TB in the dataset. Gender (𝑋1), age (𝑋2), smoking status (𝑋3), BMI (𝑋4), TB 
family history (𝑋5), and Molecular Rapid Test (TCM) findings (𝑋6) are the six aspects of the dataset 

for this research, with the diagnosis (𝑌) serving as the goal variable. Detailed variables are presented 
in Table 1. 

Table 1. Description of Feature and Target Variables for TB Diagnosis Model 

No. Variable Description Type Details 

Feature Variables 

1. 𝑋1 Gender Categorical 
0 = Female 
1 = Male 

2. 𝑋2 Age Numeric Years 

3. 𝑋3 Smoking Status Categorical 
0 = Not at risk (if the patient is a non- 
      smoker) 
1 = At risk (if the patient is a smoker) 

4.   𝑋4 Body Mass Index (BMI) Numeric 𝐼𝑀𝑇 =
weight (kg) 

height (𝑚)2
 

5. 𝑋5 Family History of TB Categorical 
0 = No family members with TB 
1 = Family members with TB 

6. 𝑋6 
Molecular Rapid Test 

(TCM) 
Categorical 

0 = Test results show MTB not detected 
1 = Test results show MTB detected 
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Table 1. (Cont.) 

Target Variable 

7. 𝑌 Diagnosis Categorical 
0 = Not diagnosed with TB 
1 = Diagnosed with TB 

 
The analysis procedures of the research are as follows: 

1. Preprocessing stage. Prepare the data by encoding any categorical variables, creating two sets of data 
namely one for training and one for testing with an 80:20 ratio and using five folds of cross-
validation on the training set. 

2. Confusion matrix evaluation on testing data for naive Bayes classification (unbalanced). Construct 
the naive Bayes model using training data, classify with testing data, and assess the model's 
performance. 

The general notation for posterior probability can be written as follows: 

𝑃(𝐶𝑘|𝑥𝑖) =
𝑃(𝐶𝑘) 𝑃( 𝑥𝑖|𝐶𝑘)

𝑃(𝑥𝑖)
,           (1) 

where 𝑃(𝐶𝑘) is the prior probability of class 𝐶𝑘. This represents the initial belief about the 

likelihood of class 𝐶𝑘 occurring before observing any data, 𝑃(𝑥𝑖|𝐶𝑘) is the likelihood of observing 

feature 𝑥𝑖 given that the instance belongs to class 𝐶𝑘 (this indicates how likely the feature 𝑥𝑖 is for 

the specific class) and 𝑃(𝑥𝑖) is the marginal probability of the feature 𝑥𝑖 . This is the overall 

probability of observing the feature 𝑥𝑖 across all classes. Thus, the Naive Bayes formula can be 
expressed as follows:                 

𝑃(𝐶𝑘|𝑥𝑖)  =  𝑃(𝐶𝑘) 𝑃( 𝑥𝑖|𝐶𝑘) 

                   =  𝑃(𝐶𝑘) . 𝑃(𝑥1|𝐶𝑘). 𝑃(𝑥2|𝐶𝑘) … 𝑃(𝑥𝑛|𝐶𝑘)  
                               = 𝑃(𝐶𝑘) ∏ 𝑃(𝑥𝑖|𝐶𝑘)𝑛

𝑖=1 .                                                       (2) 

To get the prior probability, which is the chance of class 𝐶𝑘 happening before the sample is seen, 
one may use the following formula: 

𝑃(𝐶𝑘) =  
𝑁𝐶𝑘

𝑁
,        (3) 

where 𝑁𝐶𝑘 represents the number of samples in class 𝐶𝑘 and 𝑁 is the total number of samples. To 

calculate the likelihood 𝑃(𝑥𝑖|𝐶𝑘), there are two rules: 

a. If the data from the attribute 𝑥𝑖 is categorical, then 𝑃(𝑥𝑖|𝐶𝑘) is the number of occurrences 

where feature 𝑥𝑖 occurs in class 𝐶𝑘 fractioned by the sum of all instances in the class 𝐶𝑘: 

𝑃(𝑥𝑖|𝐶𝑘) =  
𝑃(𝑥𝑖∩𝐶𝑘)

𝑃(𝐶𝑘)
.              (4) 

b. If the data from the attribute 𝑥𝑖is continuous, then 𝑃(𝑥𝑖|𝐶𝑘)  it is presumed to adhere to a 
normal distribution with a mean of μ and a standard deviation of σ, as calculated by: 

𝑔(𝑥, 𝜇 , 𝜎) =  
1

√2𝜋 𝜎2 
  𝑒

− 
(𝑥−𝜇)2

2𝜎2 .               (5) 
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Thus, 𝑃(𝑥𝑖|𝐶𝑘) = 𝑔(𝑥𝑖 , 𝜇𝐶𝑘
, 𝜎𝐶𝑘), 𝜇 =  

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
 , 𝜎 = √

∑ (𝑥𝑖−𝜇)2𝑛
𝑖=1

𝑛−1
   [15].   

The naive Bayes classification result is determined by selecting the class 𝑥𝑖 that maximizes 

𝑃(𝐶𝑘|𝑥𝑖) among all possible classes for each variable 𝑥𝑖 [1].  The evaluation metrics such as 
accuracy, sensitivity, specificity, False Positive Fraction (FPF), and False Negative Fraction (FPF) 
[16]. Table 2 presents the confusion matrix along with the evaluation metrics, which are calculated 

using Eq. (6) – (10). 

Table 2. Confusion matrix 

Prediction 
Actual 

Total 
Positive (𝑨) Negative (�̅�) 

Positive (𝑷+) 𝑎 𝑏 𝑎 + 𝑏 

Negative (𝑷−) 𝑐 𝑑 𝑐 + 𝑑 
Total 𝑎 + 𝑐 𝑏 + 𝑑 𝑛 

 
where 

Accuracy =  
𝑎

𝑛
+  

𝑑

𝑛
𝑎

𝑛
+  

𝑑

𝑛
+

𝑏

𝑛
+  

𝑐

𝑛
 
=  

𝑎+𝑑

𝑛
𝑎+𝑑+𝑏+𝑐

𝑛

=
𝑎+𝑑

𝑛
 × 100%,                    (6) 

Sensitivity = True Positive Fraction = P(P+|A) =  
𝑃(𝑃+∩𝐴)

𝑃(𝐴)
=  

𝑎

𝑛
𝑎+𝑐

𝑛

=  
𝑎

𝑎+𝑐
× 100%,        (7) 

 Specificity = True Negative Fraction = P(P−|A̅) =  
𝑃(𝑃−∩𝐴̅)

𝑃(𝐴̅)
=  

𝑑

𝑛
𝑏+𝑑

𝑛

=  
𝑑

𝑏+𝑑
 × 100%,      (8) 

False Positive Fraction (FPF) =  P(P+|A̅) =  
𝑃(𝑃+∩𝐴̅)

𝑃(𝐴̅)
=  

𝑏

𝑛
𝑏+𝑑

𝑛

=  
𝑏

𝑏+𝑑
  × 100%,          (9) 

False Negative Fraction (FNF) = P(P−|A) =  
𝑃(𝑃+∩𝐴)

𝑃(𝐴)
=  

𝑐

𝑛
𝑎+𝑐

𝑛

=  
𝑐

𝑎+𝑐
× 100.          (10) 

3. Data balancing using SMOTE.  In order to determine the SMOTE percentage (𝑁%), take the 
following steps: first, count the number of instances in the majority and minority classes. Then, 
divide that number by the number of instances in the minority classes. For categorical data, use the 
Value Difference Metric (VDM) to find the k-nearest neighbors. Here is the definition of the 
distance 𝑉 between two feature values: 

 ∆(𝐴, 𝐵) = ∑ 𝛿(𝑉1𝑖 , 𝑉2𝑖),𝑁
𝑖=1              (11) 

with, 

 𝛿(𝑉1, 𝑉2) = ∑ |
𝐶1𝑖

𝐶1
−

𝐶2𝑖

𝐶2
|𝑛

𝑖=1 ,        (12) 

where 𝑛 is the number of categories in the i-th variable, 𝐶1𝑖  is the number of category-1 occurrences 

in the i-th variable, 𝐶2𝑖 is the number of category-2 occurrences in the i-th variable, 𝐶1 is the 

number of category-1 occurrences, and 𝐶2 is the number of category-2 occurrences. 
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For numerical data, use the nearest euclidean distance from each minority data point. Suppose 
there are two data points given with 𝑝 dimensions, namely: 

𝑥𝑇 = [𝑥1, 𝑥2, … , 𝑥𝑝] dan 𝑦𝑇 = [𝑦1, 𝑦2, … , 𝑦𝑝].                                     (13) 

Then, the Euclidean distance 𝑑(𝑥, 𝑦) between the two data vectors is as follows: 

𝑑(𝑥, 𝑦) =  √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + ⋯ + (𝑥𝑝 − 𝑦𝑝)2.       (14) 

Finally, create synthetic data based on the majority vote of the features being considered and their 
k-nearest neighbors. Whereas synthetic data is generated using the following equation: 

𝑥𝑠𝑦𝑛 = 𝑥𝑖 + (𝑥𝑘𝑛𝑛 − 𝑥𝑖) × 𝛽,            𝑖 = 1,2, …,                         (15) 

where 𝑥𝑠𝑦𝑛 is replication data, 𝑥𝑖 is data to be replicated, 𝑥𝑘𝑛𝑛 is data that is closest to the data to 

be replicated, and 𝛽 is random numbers between 0 and 1. 

4. Data balancing using Tomek Links. When working with Tomek Links it is important to count how 
many occurrences fall into each class. In order to do this, the Euclidean distance and difference 
value metrics are used for numerical and categorical data respectively. Data points from the 
dominant class are eliminated from the training data set in the event that two data points from 
different classes are determined to be Tomek Links. Undersampling using Tomek Links involves 
excluding data from the majority class that has comparable traits [17]. In order to find Tomek 

Links, given there are two observations, 𝑎 and 𝑏, where the distance between them is denoted by 

𝛿(𝑎, 𝑏). If there is no further observation and assuming 𝑐, and 𝑎  and 𝑏 are from distinct classes, 
and 

𝛿(𝑎, 𝑐)  <  𝛿(𝑎, 𝑏) or 𝛿(𝑏, 𝑐) <  𝛿(𝑏, 𝑎),            (16) 

then 𝑎 and 𝑏 are called Tomek link observations [11] 

5. Data balancing using Hybrid SMOTE + Tomek Links. Determining the number of instances in 
the majority and minority classes, increasing the number of samples in the minority class using 
SMOTE, and identifying Tomek Links in the data created by SMOTE are all tasks that may be 
accomplished utilizing Hybrid SMOTE + Tomek Links. 

6. A balanced dataset may be used for naive Bayes classification in three steps: training data 
construction, testing data classification, and testing data evaluation using a confusion matrix. 

7. Compare the evaluation results from unbalanced and balanced data by using the average values of 
the classification accuracy (see Equation 6). 

The research flow, depicted in Figure 1, was implemented using RStudio software (version 4.2.2) to 
process and analyze the data efficiently. 
 
3. RESULTS 

The 1,033 observations in the data used in this study were classified into two classes namely TB 
diagnosed and not diagnosed. We used 826 patient data for training and 207 for testing. Out of the 
826 records in the training data set, 306 patients had a TB diagnosis, whereas 520 patients did not. R 
Studio software was used to aid in the categorization process. We conducted data balancing using 
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SMOTE, Tomek Links, and a mix of SMOTE Tomek Links. After the data was balanced, a naive 
Bayes model was trained to identify TB based on its attributes. The accuracy of the model was then 
compared on both the original and balanced sets of data. Separate sets of information are stored in 
the database: training data and testing data. Also, in order to get more accurate findings, we used 5-
fold cross-validation so the train:test rasio to be 80:20.  Both the original and balanced TB data 
classifications using the Naive Bayes technique are presented in the following parts. 

 

Figure 1. Flowchart of Naive Bayes Classification with Data Resampling Techniques 

 
3.1. Naive Bayes Classification on Original Data  

In order to determine the likelihood of a class for fresh data, Naive Bayes employs Bayes' 
Theorem, supposing that the characteristics in the data are unrelated to one another in light of the 
class [18]. Table 3 displays the Average Evaluation of 5-Fold Cross- Validation on the Original Data, 
which was obtained by applying the Naive Bayes algorithm on a sample of 826 training data and 207 
testing data that used 6 features. 
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Table 3.  Cross-Validation Results: Model Performance Metrics Across 5 Folds 

Fold Accuracy 𝐒𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲 FPF FNF 

1 90 % 80% 99% 1% 20% 

2 87 % 76% 97% 3% 24% 

3 91% 83% 97% 3% 17% 

4 91% 85% 96% 4% 15% 

5 89% 82% 94% 6% 18% 

Average 89% 81% 96.6% 3.4% 19% 

 
This model was able to correctly classify 89% of the total data, including both diagnosed TB cases 

and non-diagnosed cases. An average sensitivity of 81% indicates that this model is able to detect 81% 
of all actual TB cases. An average specificity of 96.6% indicates that this model is highly effective in 
identifying non-diagnosed TB cases, with 96.6% of all actual non-diagnosed cases being correctly 
classified. A False Positive Fraction (FPF) of 3.4% indicates that approximately 3.4% of all actual non-
diagnosed TB cases were incorrectly classified as TB. A False Negative Fraction (FNF) of 19% 
indicates that about 19% of all actual TB cases were incorrectly classified as non-TB diagnosed. This 
relatively high rate of false negatives suggests that nearly 1 in 5 TB cases were missed by the model. 
Reducing the FNF is crucial to ensure that all TB cases are accurately detected, which is essential for 
effective diagnosis and treatment of the disease. Consequently, in order to enhance the model's 
performance, resampling methods were used to balance the data.  

 
3.2. Balancing Method 

In order to achieve data parity, resampling methods are used. By repeatedly sampling from the 
minority group, oversampling brings the minority group's observational count closer to that of the 
majority group. One method that helps to even out data is the Synthetic Minority Oversampling 
Technique (SMOTE). It does this by making up instances of the minority class to ensure statistical 
parity [8]. Finding nearby data points is how the SMOTE approach finds patterns. Undersampling 
using Tomek Links involves excluding data from the majority class that has comparable traits [17]. 
Hybrid techniques are methods for addressing imbalanced data by combining both oversampling and 
undersampling methods. By combining these two techniques, a dataset is expected to avoid excessive 
information loss (a negative effect of undersampling) and overfitting (a negative effect of 
oversampling). One such hybrid technique is SMOTE + Tomek Links [12][19]. The table 4 displays 
the outcomes of the data balance. 

Table 4.  Class Distribution of Tuberculosis Diagnosis Dataset After Applying Resampling Techniques 

Datasets Class Original SMOTE Tomek Links 
SMOTE+ 

Tomek Links 

Tuberculosis 
diagnosis 

not tuberculosis 520 509 306 464 

tuberculosis 306 508 306 504 

 
From the 826 training data, there are 306 patients diagnosed with TB and 520 patients not 

diagnosed with TB. After applying SMOTE, the number of samples for both classes became balanced, 
with 509 patients for not diagnosed with TB and 508 patients for diagnosed with TB. After the Tomek 
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Links process, the number of samples for each class changed to 306 patients for not diagnosed with 
TB and 306 patients for diagnosed with TB.  After applying SMOTE to increase samples in the 
minority class (TB diagnosed) and Tomek Links to clean the dataset, the proportions changed to 464 
patients for not diagnosed with TB and 504 patients for diagnosed with TB. The number of training 
data points before and after balancing illustrated in Figure 2. 

 
(a)                          (b)                                 (c)                                    (d) 

Figure 2.  Number of Training Data Points Before and After Balancing (a) Original Data, (b) SMOTE Data, 
(c) Tomek Links Data, (d) SMOTE+Tomek Links Data. 

Conducting Naive Bayes classification analysis follows the completion of the data balancing 
procedure. We will use 5-fold cross-validation to train our Naive Bayes model on the training data, 
and then we will use the testing data to measure the model's performance in terms of accuracy, 
sensitivity, specificity, FPF, and FNF. There will be an 80:20 split in the data. Table 5 – 7 show the 
results of the model assessment. 

Table 5.  Performance Metrics of the TB Diagnosis using SMOTE  

Fold Accuracy 𝐒𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲 FPF FNF 

1  90 % 85 % 95% 5% 15% 

2  92 % 87 % 96% 4% 13% 

3  88 % 85 % 92% 8% 15% 

4  89 % 85 % 94% 4% 15% 

5  90 % 85 % 96% 4% 15% 

Average 90% 85.4 % 94% 5% 14.6% 

 
Table 6. Performance Metrics of the TB Diagnosis using Tomek Links  

Fold Accuracy 𝐒𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲 FPF FNF 

1  90 % 85 % 99% 1% 15% 

2  88 % 82 % 97% 3% 18% 

3  90 % 88 % 96% 4% 12% 

4  91 % 89 % 96% 4% 11% 

5  90 % 88 % 94% 6% 12% 

Average 89% 86 % 96% 4% 14% 

 
 

 



Enhancing Tuberculosis Diagnosis: Effective Naive Bayes Classification Using SMOTE and … 

107 | InPrime: Indonesian Journal of Pure and Applied Mathematics 
 

Table 7. Performance Metrics of the TB Diagnosis using SMOTE + Tomek Links  

Fold Accuracy 𝐒𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲 FPF FNF 

1  93 % 88 % 97% 3% 12% 

2  91 % 87 % 93% 7% 13% 

3  94 % 89 % 97% 3% 11% 

4  94 % 90 % 97% 3% 10% 

5  94 % 87 % 97% 3% 13% 

Average 93% 88 % 96% 4% 12% 

Based on Table 5 – 7, the SMOTE model achieved an average accuracy of 90%, the Tomek Links 
model 89%, and the SMOTE+Tomek Links model 93%. In other words, whether a case of TB is 
identified or not, the model can accurately categorize 90%, 89%, and 93% of the data, respectively. 
The average sensitivity of the models is 85.4%, 86%, and 88%. This indicates the model's ability to 
detect 85.4%, 86%, and 88% of all actual TB diagnosed cases. The average specificity of the models 
is 94%, 96%, and 96%. This indicates that the model has a good ability to accurately identify most of 
the non-TB diagnosed cases, with an average False Positive Fraction (FPF) of 6%, 4%, and 4%. The 
low FPF indicates that the model rarely misclassifies healthy individuals as having TB, with an average 
False Negative Fraction (FNF) of 14.6%, 14%, and 12%. 
 

3.3. Comparison of Naive Bayes Classification Before and After Balancing 
Table 8 presents the results of naive Bayes classification using the original and balanced data. In 

Table 8, the performance of the classifications resulted from each scenario is compared using the 
four metrics: accuracy, sensitivity, specificity, false positive fraction (FPF), and false negative fraction 
(FNF). 

Table 8. Performance Metrics of the TB Diagnosis using Naive Bayes Classification. 

 Original  𝐒𝐌𝐎𝐓𝐄 𝐓𝐨𝐦𝐞𝐤 𝐋𝐢𝐧𝐤𝐬 
SMOTE+Tome

k Links 

Accuracy 89 % 90 % 89 % 93 % 

Sensitivity 81 % 85.40 % 86 % 88 % 

Specificity 96.60 % 94 % 96 % 96 % 

FPF 3, 40 % 5 % 4 % 4 % 

FNF 19 % 14.60 % 14 % 12 % 

 
In terms of performance, Table 8 shows that the SMOTE+Tomek Links technique came out on 

top with a 93% accuracy rate. This suggests that undersampling with Tomek Links to decrease overlap 
between minority and majority classes and oversampling with SMOTE to solve class imbalance may 
enhance the Naive Bayes model's classification accuracy. The SMOTE method also showed a 
significant improvement with an accuracy of 92%, while both the original data and data after applying 
Tomek Links had the same accuracy of 89%. Nevertheless, in this evaluation context, 
SMOTE+Tomek Links proves to be the better choice for enhancing classification accuracy on 
imbalanced data. For more clarity Figure 3 shows the comparison of the accuracy values of the four 
data. 
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4. DISCUSSION 

The results of this study demonstrate that using a hybrid approach combining SMOTE and 
Tomek Links significantly improves the performance of Naive Bayes in classifying TB cases, with an 
accuracy increase from 89% to 93%. This improvement is consistent with findings from other studies, 
such as those by Tyagi et al. [5], who highlighted the importance of oversampling techniques like 
ADASYN in managing data imbalance for TB diagnosis. However, while ADASYN showed 
improved performance in some cases, our study highlights the added benefit of combining SMOTE 
with Tomek Links for removing noisy samples. Previous research, such as the study by Sastrawan et 
al. [3], examined the effects of hybrid sampling methods on predictive accuracy, yet did not specifically 
address their application in TB diagnosis. Our focus on TB adds value to the field by addressing the 
unique diagnostic challenges posed by this disease, particularly in high-burden areas like Indonesia, 
where early and accurate diagnosis is critical. Studies like those by Sejie et al. [20] have also emphasized 
the role of accurate classification in reducing the TB burden in resource-limited settings. 

 

Figure 3. Comparison of Model Accuracy with Different Data Balancing Techniques 

In terms of performance metrics, our study achieved a sensitivity of 88% and specificity of 96%, 
aligning closely with research by Singh et al. [21], which showed that balanced data improved 
sensitivity in TB detection using machine learning methods. The reduction of false positives and false 
negatives in our approach addresses the challenges identified in studies like those by Yadav et al. [22], 
where false negatives posed significant risks to patient health in TB management. Furthermore, the 
combination of SMOTE and Tomek Links addresses the dual challenges of overfitting and 
information loss, a balance that has been difficult to achieve in previous studies. For instance, Zhang 
et al. [23] found that while SMOTE effectively balanced data, it often led to overfitting when used 
alone. Our study overcomes this by integrating Tomek Links, which cleanses the dataset of noise, as 
also suggested by Singh et al. [21] in their exploration of hybrid resampling for medical diagnoses. 
This study’s focus on Indonesia's TB burden is particularly relevant given the estimated 1,060,000 TB 
cases as of January 2024. Studies by Noviyani et al. [24] have highlighted the increasing TB incidence 
in Indonesia and the pressing need for reliable diagnostic methods. Our results suggest that integrating 
hybrid resampling techniques into diagnostic protocols could improve the identification and 
management of TB cases, ultimately aiding initiatives like the TOSS TB movement in Indonesia.  
Moreover, unlike studies that focus solely on molecular testing, our study incorporates additional 
factors like age, gender, smoking status, and BMI. This multifactorial approach provides a more 
comprehensive understanding of TB diagnosis, as emphasized in studies. The improvement in model 
accuracy through hybrid methods ensures better use of such diverse data, aligning with the findings 
of Wang et al. [25], who advocated for robust preprocessing techniques in enhancing medical 
classification outcomes. In summary, the hybrid SMOTE + Tomek Links approach proves to be a 
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valuable method for addressing data imbalance, offering significant advantages in terms of accuracy, 
sensitivity, and specificity. This study contributes to the existing body of literature by providing a 
robust solution to the challenges of diagnosing TB in imbalanced datasets, a crucial step for improving 

patient outcomes in high-incidence regions. 

4. CONCLUSIONS 

This study found that combining the SMOTE oversampling technique with the Tomek Links 
undersampling technique enhances the accuracy of the Naive Bayes model. This conclusion is based 
on comparing the Naive Bayes classifier's performance on original and balanced data for TB diagnosis 
at RSD Mayjend HM Ryacudu Kotabumi. Training data was balanced using SMOTE, Tomek Links, 
and a combination of both. Statistically, the hybrid SMOTE and Tomek Links method significantly 
improved classification accuracy, achieving an average of 93% accuracy, 88% sensitivity, 96% 
specificity, 4% FPF, and 12% FNF. This hybrid approach effectively addresses data imbalance, leading 
to a more reliable model for distinguishing between diagnosed and non-diagnosed TB cases. 

Future studies should consider exploring additional data balancing techniques, such as Adaptive 
Synthetic Sampling (ADASYN), to compare their effectiveness with the SMOTE + Tomek Links 
method. Moreover, integrating advanced machine learning algorithms, like ensemble methods or deep 
learning models, could enhance predictive accuracy. Investigating the influence of additional variables, 
such as socio-economic factors or comorbidities, on TB diagnosis may provide a more comprehensive 
understanding of patient outcomes. Finally, longitudinal studies assessing the long-term impacts of 
accurate TB diagnosis on public health outcomes would be beneficial. 
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