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Abstract  
Since a reliable internet signal has become an essential and significant need nowadays, the existence of 

modems as transmitters of internet signals is also crucial; modems transmit the internet signal (without 

cable), which is then captured by devices. This research aims to construct a mathematical model to 

determine the minimum number of modems and their placement so that the entire building FPMIPA-

A of UPI has a good internet signal. In this research, we assume that the modem can pass through at 

most two walls, and the area studied is limited to the first floor of FPMIPA-A. The model is based on 

the illumination problems theorems, one of which states that every monotone 6-gon can be covered by 

a single 2-modem point placed at one of its two leftmost (or rightmost) vertices.  By the theorem, we 

view the layout of the rooms in the building as a combination of polygons. The results show that 12 

modems are required to cover all areas on the first floor of FPMIPA-A to get a good signal.  

Keywords: illumination problem; modem; polygonal regions; optimal modem placement; building 
FPMIPA A. 
 

Abstrak 
Saat ini, kebutuhan akan sinyal internet yang andal menjadi kebutuhan penting dan utama. Modem sebagai pemancar 
sinyal internet mengirimkan sinyal internet (tanpa kabel) dan kemudian ditangkap oleh perangkat. Penelitian ini 
bertujuan untuk membangun model matematika yang menentukan jumlah minimum modem dan penempatannya agar 
seluruh gedung FPMIPA-A UPI mempunyai sinyal internet yang baik. Pada penelitian ini diasumsikan modem dapat 
menembus paling banyak dua dinding dan area yang diteliti dibatasi pada lantai 1 gedung FPMIPA-A UPI. Model 
matematika untuk masalah penempatan modem ini didasarkan pada teorema masalah iluminasi, yang salah satunya 
menyatakan bahwa setiap 6-gon monoton dapat ditutupi oleh satu titik 2-modem yang ditempatkan di salah satu dari 
dua simpul paling kiri (atau paling kanan).  Berdasarkan teorema tersebut, tata ruang pada lantai 1 gedung FPMIPA-
A UPI dipandang sebagai kombinasi poligon. Hasil penelitian menunjukkan bahwa dibutuhkan 12 modem untuk 
mencakup seluruh area di lantai 1 FPMIPA-A guna mendapatkan sinyal yang baik.  
Kata Kunci: masalah iluminasi; modem, daerah poligon; penempatan modem secara optimal; gedung FPMIPA A. 
 

2020MSC: 90C90.   
 

1. INTRODUCTION 

One critical aspect of using technology is internet connectivity. Modems placed in all faculty 
buildings of UPI, including building FPMIPA-A, are crucial to ensure the quality of the internet signal. 
However, modem placement often has challenges, such as how to fulfil internet needs with a minimal 
number of modems. UPI constantly improves the quality of its public facilities, providing a good 
internet signal in all parts of the building by placing modems optimally; internet needs are fulfilled 
with a minimal number of modems. 

https://creativecommons.org/licence/by-sa/4.0/
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Aicholzer et al. [1] mention that to connect a laptop to a modem, at least two factors must be 
considered: the distance between the laptop and the modem and the number of walls separating the 
laptop from the modem. Insufficient illumination can affect modem performance and internet signal 
quality, harming the user's network. This problem is known as the modern illumination problem, an 
extension of the Art Gallery Problem. In this context, illumination means ensuring that every point in 
the gallery can be reached by at least one modem signal. The term modem, in the context of this study, 
refers to a wireless modem. We study the k-modem illumination problem, which is a solution to place 

several modems with signal coverage penetrating a maximum of 𝑘 sides in a polygon P with 𝑛 points 
so that the signal can reach the entire P area. The main goal is to ensure that all areas in the building 
are illuminated or receive a signal from the 𝑘-modem. 

The former study, such as Chvátal (see [2]), formulated a principle that is now known as Chvátal's 

Art Gallery Theorem (1973), commonly called the Watchman Theorem: for any natural number 𝑛, 

⌊𝑛/3⌋ guards are needed to watch 𝑛-wall polygons (for more detail see [1], [2], [3], [4], [5], [6], [7]). 
This theorem has been extended and developed in depth by other mathematicians and computer 
scientists who study partition algorithms to obtain various possible variations, such as exploring 
multiple aspects of the illumination problem and providing theoretical constraints and practical 
algorithms for placing modems in various polygonal arrangements. For example, Monroy [8] studied 
variations of the illumination problem for families of lines, families of line segments, orthogonal 
polygons, and sets of vertical or horizontal disjoint segments or sets of lines; Duque [9] determined 
an upper bound on the k-modem illumination problem; and Shamaee [10] determined the minimum 
number of modems to cover a monotone polygon.  Ballinger et al. in [11] developed a constraint on 
the 𝑘-modem illumination problem, specifically for 𝑘 = 2; that is, all simple polygons require at least 

⌊𝑛/6⌋2-modem to illuminate, where the modems are placed on the interior boundaries of the polygon. 

Cannon et al. [12] improved research on this limitation, stating that all simple polygons with 𝑛 points 

require as many as ⌊𝑛/5⌋ 2-modem to illuminate the polygon's interior. Mahdavi [13] examined a new 
variant of covering in an orthogonal art gallery problem where each guard is a sliding 𝑘-transmitter. 

Although research on modem illumination problems has been widely studied, implementing these 
theoretical findings in real-world scenarios still needs to be improved. The plan of a building consisting 
of connected rooms is usually depicted as a combination of several divided quadrangles. Therefore, it 
is necessary to build a model and make modifications to apply the theorems in Cannon et al. [12]. This 
research aims to construct mathematical models and implement theorems related to geometry and 
polygons to solve the modem illumination problem in building FPMIPA-A. It is assumed that the 
value 𝑘 = 2, representing the modem, has good signal strength to penetrate a maximum of two walls. 
This assumption is used to ensure smooth internet access from the modem signal so that laptops or 
other devices in the building can receive the modem signal optimally and that adequate signal 
availability can be guaranteed to support the functionality of the internet network in building 
FPMIPA-A of UPI. 

 
2. METHODS 

Research methods used in this study consist of several phases as follows. 
1) Literature review on the theorems and lemmas  

In the context of implementing the k-modem illumination problem, the area on a building 
floor is a graph consisting of several polygons. The edges of the graph are the walls of the building 
while the vertices are the intersection points of the two edges of the polygon. Suppose that one 



Khansa Salsabila Rohadatul Aisy, Kartika Yulianti, Encum Sumiaty, and Isnie Yusnitha 

150 | InPrime: Indonesian Journal of Pure and Applied Mathematics 
 

of the polygons is called polygon 𝑃. In a polygon 𝑃 with 𝑛 vertices, suppose that there are points 

𝑝𝑖 ∈ 𝑃 for all 𝑖 ∈ ℕ. In this article, we say interchangeably between vertices and points, as well 
as between edges and walls. We recall that the 𝑘-modem illumination problem is a solution to 

place the number of modems needed to reach all points 𝑝𝑖 in the polygon 𝑃 from the modem 

𝑞 ∈ ℝ2 which cuts a maximum of 𝑘 sides if a straight-line segment is constructed (see [1], [13]). 

A point 𝑞 ∈ ℝ2 is called a 𝑘-modem point, and a point 𝑝 ∈ 𝑃 is said to be a 2-modem illuminated 

from 𝑞 ∈ ℝ2, if the line-segment 𝑞𝑝̅̅ ̅ intersects at most 2 edges in 𝑃. 
We implement practically the 𝑘-modem illumination problem in the building FPMIPA-A to 

install and arrange modems, particularly 2-modems. Furthermore, our discussion is limited to the 
number and position of the 2-modem needed to illuminate the monotonous polygon horizontally 
in the building FPMIPA- A; that is, the 2-modem signal range applies only to the same floor. 

The set of points on 𝑃 illuminated by the 2-modem of 𝑞 ∈ ℝ2 is called the 2-modem 

illuminated region, denoted by 2𝑉𝑅(𝑞). For S ⊆ 𝑃, define  2𝑉𝑅(𝑆) ≔∪𝑞∈𝑆 2𝑉𝑅(𝑞). Any set C 

⊆ 𝑃 is called a valid 2-modem point in 𝑃 if 2𝑉𝑅(𝐶) = 𝑃  (see [12]). As an illustration, see Figure 

1 below. Suppose that there is a polygon 𝑃. In Figure 1 (a), suppose that a 2-modem is placed at 

the point  𝑞1 ∈ ℝ2. For 𝑖 = 1, … , 7, let 𝑝𝑖  be the points representing the region 𝑃. We observe 

that 2𝑉𝑅(𝑞1) = {𝑝𝑖|𝑖 = 1,2,3,4,6,7}, because the points 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝6, 𝑝7 ∈ 𝑃 are 

illuminated by the 2-modem point 𝑞1 due to the straight-line segment 𝑞1 to 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝6, 𝑝7 

intersects at most 2 sides. However, for the same reason, 𝑝5 ∉ 2𝑉𝑅(𝑞1). A point illuminates the 
area is colored red as in Figure 1(a). In Figure 1 (b), suppose that a 2-modem is placed at the point 

𝑞3. The entire polygon area P is 2𝑉𝑅(𝑞3). In other words, point 𝑞3 is a valid 2-modem point 

because 𝑞3 illuminates 𝑃. 

 
  

Figure 1. Illustration. 

The following are the lemmas and theorems for the 2-modem illumination problem based 
on [12].  The proof which is given here following [12] but in a more detailed version.  
 
Lemma 1. For each 5-gon can be illuminated by a 2-modem point that is placed anywhere (either 
on the sides or in the interior of the polygon). 
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Proof.  
It will be shown that every 5-gon is 2-convex. Note that, a pentagon or 5-gon is a polygon 

with 5 sides and 5 points with a total angle of 540° or a combination of 3 triangle angles, namely 
3×180° (see [14]). To prove every 5-gon is 2-convex, the 5-gons are divided into 2 groups. The 
first group consists of 5-gons where all angles have measures less than 180°. Meanwhile, the 
second group consists of 5-gons with several angle measures of more than 180°. 

Figure 2 shows the shape of the first group of 5-gons. Figure 2 (a) is a 5-gon shape with 
angles of the same measure, that is 108°. The 5-gon shape in Figure 2 (b) has 2 pairs of equal 
angle measures and 1 different angle. Figure 2 (c) shows a 5-gon shape where all the angle sizes 
are different and are less than 180°. Meanwhile, Figure 2 (d) is a 5-gon shape with 1 pair of equal 
angle measures and 3 different angles. 

 

Figure 2. Group 1 of 5-gons; the size of each angle < 180°. 

Figure 2 shows that 2 points in a 5-gon with an angle of less than 180° can be connected by 
a straight-line segment that passes through a maximum of 2 sides in each 5-gon. Thus, every 5-
gon with an angle <180° is 2-convex. 

 

Figure 3. Group 2 of 5-gons; the size of some angles >180. 
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A similar way to show that 2 points in a 5-gon with some angles size more than 180°, the 2 
points can be connected by a straight-line segment that passes through a maximum of 2 sides in 
each 5-gon as shown in Figure 3. Thus, every 5-gon with an angle >180° is 2-convex, and so 
every 5-gon is 2-convex. 

 

Lemma 2. Let 𝑃 be a 6-gon and let 𝑒 = {𝑣, 𝑤} be a side of 𝑃. A 2-modem point on 𝑣 illuminates 

𝑃 or a 2-modem point on 𝑤 illuminates 𝑃. 
 

Lemma 3. Each monotone 6-gon 𝑃 can be illuminated by a 2-modem point placed at one of its 

two leftmost (or rightmost) vertices: if the two vertices are 𝑣1 and 𝑣2, a 2-modem point either in 

𝑣1 or in 𝑣2 , illuminates 𝑃. 
 

Theorem 4. A simple polygon with 𝑛 points requires ⌊𝑛/5⌋ 2-modem to illuminate the interior 
of the polygon. 
 
Proof.  

If we partition 𝑃𝑛 into several 5-gons, by Lemma 1, a 2-modem can be placed anywhere in 
the interior of the 5-gon such that the 5-gon is illuminated by a 2-modem. Choose an arbitrary 
point in the 5-gon area as the 2-modem point. The combination of the partitions of several 5-

gons will again form 𝑃𝑛, if the number of 𝑛 is a multiple of 5 then the 2-modems needed are 𝑛/5 

2-modems. If 𝑛 ≥ 5 and 𝑛 is not a multiple of 5, then there are 5-gon partitions that intersect 
each other and have the same 2-modem points for different partitions. Therefore, a simple 

polygon with 𝑛 points requires as many as ⌊ 𝑛 /5⌋ 2-modems to illuminate the interior of the 
polygon. The area-colored blue is the area illuminated by a 2-modem because the 2-modem point 
and any point in the 5-gon can be connected by a straight-line segment that passes through a 
maximum of 2 sides in the 5-gon. 

 

Figure 4. Theorem 4: illustration. 

 
2) Model construction  

We determine the placement point and number of 𝑘-modems by applying the lemmas and 
theorems in [12]. The stages of completing the model are as follows. 

i. Identify 𝑛 as the points and 𝑘 as the number of walls penetrated most by a straight line from 
the k-modem point to the points in the building P. Fix the value 𝑘 = 2.  

ii. Compute the number of 2-modems needed by applying Theorem 4.  
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iii. Determine a valid 2-modem point such that each floor of the building can be illuminated by a 
minimum of modems by dividing the graph into several regions that can form 6-gons and then 
applying Lemma 2 and Lemma 3. If there is a side in the interior of the 6-gon, then 
modifications need to be made to form a 6-gon with holes, by making the only side in the 
interior of the area into a 4-sided polygon.  

iv. Analyze each direction of the building separately. To carry out this analysis, it is necessary to 
name the buildings according to their directions. We label the West building with W, the North 
building with N, the East building with E, and the South building with S. For example: label 
W-1 refers to the West building of the first floor of building FPMIPA-A. 
  

3) Model validation 
Check the modem placement results again by subtracting a 2-modem from the analysis 

results and placing them randomly to ensure the solution obtained is optimal.  
 

4) Visual representation 
Create a visual representation of the modem placement in the building using GeoGebra and 

PowerPoint to show the modem position and signal coverage area.  

3. RESULTS  

In this section, we discuss construction of a mathematical model and implementation of theorems 
related to geometry and polygons to solve the modem illumination problem in building FPMIPA-A. 
In this study, there are several standing assumptions as follows. 

i. The modem signal can penetrate a maximum of 2 uniform walls, i.e., the value of 𝑘 = 2.  
ii. The main limitation of the modem illumination problem is influenced by the number of walls 

that restrict the position of the modem to the laptop or other devices, while distance is not.  
iii. All types of modems used are considered to have similar signal strength.  
iv. The modem signal is unable to penetrate the floor below or above it; the modem signal strength 

only applies to one floor (horizontal).  
To solve the 2-modem illumination problem on the first floor of building FPMIPA-A, we need 

to present the first-floor plan of building FPMIPA-A in a graph model as shown in Figure 5. The first-
floor plan of building FPMIPA-A consists of four parts, namely the West (W-1), East (E-1), North 
(N-1), and South (S-1). We determine the number of modems and their locations separately in each 
part.  

 

Figure 5. Graph model of the first floor of building FPMIPA-A. 
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First, we describe the problem solution for the West (W-1). Figure 6 is a sketch of the plan of the 
West (W-1).  

 

Figure 6. The solution of the 2-modem illumination problem for the graph model W-1. 

The stages of solving the 2-modem illumination for the graph model W-1 are as follows. First, 
partition the graph model W-1 into 6-gons. We observe that W-1 can be divided into 3 6-gon regions, 
namely regions (a), (b), and (c). The region (a) can be simplified again into smaller 2 6-gons so that 
Lemma 3 can be applied.  

 

Figure 7. The graph model W-1 and its solution for the region (a). 

For the left 6-gon colored in grey in Figure 7, based on Lemma 3, we can directly choose the 
edge e on the rightmost or leftmost side of the 6-gon. Fix the rightmost side of the 6-gon and write it 
as e, then a vertex v colored in red can be a valid 2-modem point, or a vertex w colored in blue can be 
an alternative valid 2-modem point with the maximum number of walls penetrated by straight line 
segments from the 2-modem point to the vertices in graph W-1 is 2 edges.  

Meanwhile, the right 6-gon region in dark grey needs to be modified so that it can form a hollow 
6-gon by making the only side in the interior of the region a 4-sided polygon as in Figure 7. 
Furthermore, e can be directly selected on the right or left side of the 6-gon. In Figure 7, suppose we 
choose the left side of the 6-gon as e, then a vertex w in red can be a valid 2-modem point or a vertex 
v in blue can be an alternative valid 2-modem point with the number of walls penetrated by the most 
straight line segments from the 2-modem vertex to the points in the W-1 graph is 2 edges.  

By Theorem 4, the region (a) with 9 vertices requires ⌊9/5⌋ = 1 2-modem to illuminate the 
interior of the region (a). Therefore, the two 2-modem points in the two 6-gon regions are represented 
as red vertices (valid 2-modem points) or pink vertices (alternative valid 2-modem points).  
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Figure 8. Valid 2-modem points for W-1. 

By dividing the graph W-1 into 3 regions representing all points on the graph, we analyze that 
three 2-modems need to be placed in building W-1 to illuminate building W-1. The location of the 
three 2-modems can be seen in Figure 8, the valid 2-modem points are marked with red nodes. As an 
alternative position, the three 2-modems can also be placed in the nodes that are colored pink.  

 

Figure 9. Valid 2-modem positions on the first floor of building FPMIPA-A. 

The solution for the other building plans (North, South, and East) is done in a similar way. Based 
on the analysis results using the illumination problem approach, building W-1 requires three 2-
modems, building E-1 requires two 2-modems, building N-1 requires four 2-modems, and building 
S-1 requires three 2-modems to illuminate the first floor of building FPMIPA-A. In Figure 10, the 
colored areas (red, green, and blue) indicate the areas inside the first floor of building FPMIPA-A that 
are illuminated by the 2-modems placed on the colored nodes (red, green, and blue). Thus, a total of 
twelve 2-modems are needed to illuminate the first floor of building FPMIPA-A. We conclude that 
twelve modems with signal strength that can penetrate a maximum of two walls are required so that 
all areas inside the first floor of building FPMIPA-A receive the modem signal, as shown in Figure 9.  

Model Validation 
Validation of the results is done by reducing a 2-modem and by randomly selecting valid 2-modem 

points on the graph model from the analysis results through the illumination problem approach. For 
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example, according to the result of the analysis, building E-1 requires two 2-modems. To validate the 
result, a random position of a 2-modem is selected which is marked with a red point as in Figure 10.  

 

Figure 10. Result validation for graph model of the building E-1. 

If a straight-line segment is constructed from a 2-modem point to each vertex of graph E-1 as 
shown in Figure 10, the results show an area that is not illuminated by a 2-modem. Observe that the 
colored area is the area illuminated by a 2-modem. This indicates that a 2-modem is not enough to 
illuminate graph E-1 and the analysis results using the illumination problem approach in this study 
have produced valid 2-modem points.  

4. DISCUSSION 

Illumination problems that generalize art gallery problems are applied to solve modem placement 
problems. In the result of Canon [12], a theorem shows that 1 modem with the power to penetrate 
two walls is enough to illuminate a hexagon. That result aligns with the study by Aicholzer [1], stating 
that every orthogonal polygon with at most (𝑘 +4) vertices can be illuminated by a 𝑘-modem placed 
anywhere, in the interior, or on the boundary of the polygon. Practically, we implement the theorems 
on a plan of a building that consists of rooms. However,  we can not apply directly as the building 
plan is usually not in the form of a polygon, but a collection of some intersect rectangles. For that 
reason, we propose a solution to the problem by using a hexagon as a basis and some rectangles that 
form a hexagon are viewed as one unit that by the theorems can be illuminated by a single 2-modem.  

5. CONCLUSIONS 

In this article, a mathematical model has been constructed to solve the modem placement 
problem on the first floor of FPMIPA-A. The theorems contained in Cannon [12] are the basis for 
the formation and completion of the model. By using the illumination problem approach, the total 
minimum number of valid 2-modems on the first floor of building FPMIPA-A is twelve 2-modems; 
three 2-modems in the West, two 2-modems in the East, four 2-modems in the North, and three 2-
modems in the South. The positions of the 2-modems are placed at the points shown in Figure 9. For 
further research development, an implementation study of the illumination problem can be carried 
out with a value of 𝑘 ≥ 3, and by considering variations such as wall thickness, varying modem signal 
strengths, and the ability of the modem signal to penetrate to the floor above or below.  
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