

A Bibliometric Analysis of Mathematical Problem-Solving: A State of The Art

Shelly Morin

Department of Mathematics Education, Universitas Media Nusantara Citra, Jakarta, Indonesia Email: shelly.morin@mncu.ac.id

Abstract

This study aims to explore research on problem-solving in various countries using complete and systematic bibliometrics, mainly Publish or Perish (PoP) and Vos viewer, to analyze data systematically. This analysis reveals the development of research related to problem-solving to provide new ideas and raise research gaps related to this topic. The data used in 2016-2022 is 2959 articles using keywords, namely problem solving and mathematics. The method used in this study used bibliometric analysis with interconnected keyword maps. Through this bibliometric, researchers can find research trends by the chosen topic, explain the updates that can be presented, and determine research gaps. So, this research is the first step to making it easier for researchers to report the results of previous studies and offer further research.

Keywords: Bibliometric; Mathematics; Problem solving; Vos viewer.

Abstrak

Tujuan penelitian ini untuk mengeksplorasi penelitian tentang pemecahan masalah diberbagai negara dengan menggunakan analisis data bibliometric vos viewer dan publish or perish secara lengkap dan sistematis. Analisis ini mengungkapkan perkembangan penelitian terkait pemecahan masalah untuk memberika ide baru serta memunculkan kesenjangan penelitian terkait topik ini. data yang digunakan pada tahun 2016-2022 sebanyak 2959 artikel. Metode yang digunakan dalam penelitian ini menggunakan analisis bibliometric dengan peta kata kunci yang saling berhubungan. Melalui bibliometric ini peneliti dapat menemukan trend penelitian yang sesuai dengan topik yang dipilih, menjelaskan kebeharuan yang dapat disajikan serta menentukan gap penelitian. Sehingga penelitian ini sebagai langkah awal untuk memudahkan peneliti melaporkan hasil penelitian terdahulu untuk dapat menawarkan penelitian yang berbeda dari penelitian yang sudah ada.

Kata Kunci: Bibliometrik; Matematika; Penyelesaian masalah; Vos viewer.

2020MSC: 97D50, 97U60.

1. INTRODUCTION

Problem-solving is an activity that everyone engages in regularly. For students, solving problems is an essential part of learning, particularly in mathematics, where it is a primary educational goal (Garcia, [1]). Developing problem-solving skills can enhance other abilities, such as critical thinking, representation skills, and reflective thinking (see [2], [3], [4]). Therefore, according to the National Council of Teachers of Mathematics (NCTM, [5]), problem-solving is a crucial skill that all students must develop. The 2016 Ministry of Education and Culture regulations on primary and secondary education content standards state that in mathematics learning, students should be able to think both concretely and abstractly to solve mathematical problems.

* Corresponding author

Submitted September 22nd, 2024, Revised October 31st, 2024,

Accepted for publication November 3rd, 2024, Published Online November 20th, 2024

©2024 The Author(s). This is an open-access article under CC-BY-SA license (https://creativecommons.org/licence/by-sa/4.0/)

A problem-solving situation involves a challenge that students must address using their knowledge. According to Goldin ([6]), a problem consists of three components: (1) the initial condition (given state), (2) the goal or end condition (goal state), and (3) obstacles that hinder the transition from the initial to the goal condition. To describe a problem, one must: (1) define a state space, (2) establish one or more initial states, (3) set one or more goals, and (4) establish a set of rules. Jonassen ([7]) defines problems based on (1) the problem domain, (2) the type of problem, (3) the problem-solving process, and (4) the solution. In mathematics, the problem domain includes concepts, rules, proofs, posing, and solving problems. A problem arises from a gap between the initial condition and the desired goal, creating a "problem situation." Therefore, research on problem-solving must clearly define the issue to be explored, helping students understand the difficulties they encounter.

Problem-solving can be approached in various ways, including routine and non-routine problems. Yee ([8]) distinguishes between closed problems, which have specific solutions and methods, and open-ended problems, which require multiple solutions. Jonassen ([7]) also discusses well-structured and ill-structured problems. Despite these various perspectives, Polya's fundamental principles of problem-solving are widely used. Polya ([9]) identifies four basic steps: (1) Understanding the problem, where students restate the problem information; (2) Devising a plan, where students develop a strategy to solve the problem; (3) Carrying out the plan, where students execute their strategy; and (4) Looking back, where students review their work. These steps form the basis for much problem-solving research.

Despite extensive research on problem-solving, gaps remain in the literature. Goldin's and Jonassen's perspectives highlight the need for clearly defined problems and research updates. One way to trace previous research and map relationships between studies is through bibliometric mapping, which visualizes research trends and developments. Vos Viewer is a tool that uses bibliometric network mapping to group publications and analyze trends (Eck, [10]). It visualizes the network of interrelated articles or authors, helping researchers find new ideas in problem-solving research, especially in mathematics education.

This study aims to display the steps of bibliometric data analysis on mathematical problem-solving using Vos Viewer. It is expected to provide a reference for identifying new research ideas in problem-solving, particularly in mathematics education.

2. METHODS

The review is systematically established on the methodology to clarify and simplify the search process. This is done in three phases: Planning, Implementation, and Reporting. The planning stage prepares the topic or problem being investigated, determining specific keywords to make searching easier, determining year limits in capturing articles, and preparing tools to capture and map data. In the implementation process, the collected articles are then extracted, and the identity of the netted article is to match the specified keywords. Finally, a report on the results obtained in the search process is presented, considering their relevance and impact.

2.1. Planning

This discussion focuses on studies of problem-solving, particularly in mathematics education for elementary, middle, and high school students. Research from various countries can contribute to the

development of these studies. Although problem-solving has been extensively researched, its definition and objectives can vary among researchers.

The search process begins with using the tool Publish or Perish (PoP) to collect article data from 2,959 articles using the keywords "problem-solving and mathematics," sourced from Google Scholar and Scopus. The data is limited to the years 2016-2022 and saved in Bibtex or Ris formats for further use. Searches on Google Scholar and Scopus are capped at 200 articles per year. These articles are then imported into Mendeley Desktop or Mendeley Reference Manager, as illustrated in Figure 1. It is essential to complete the required metadata for all articles in Mendeley, as shown in the right column, to ensure data completeness for analysis in the Vos Viewer tool.

2.2. Implementation

This section gathers all published articles that include the author keywords "problem-solving" and "mathematics problem-solving," ensuring that the search keywords match the article's author keywords. We filter the results to retain only articles, excluding other types of publications. Additionally, the collected articles must have updated details in Mendeley, as illustrated in Figure 1.

10 × 12 12	12	0						Q+)===	
MY CHENNY			a resident har -						
Al Delugences	Ľ.	-	All Market	No.	-	Address of	-	A STATEMENT AND	
Accests Real	6		No.Prosky, Klaski, Tarvis	The methability of computer problem solving with tensional	2022	Acts Productions	Der 9	Journel Current Phychology New 2021	r
My Publications		Ð.	Jung Ranghaire U. Neoding Pa Ping Let	On teachers i well to tablet teachers, they in mathematics process, severage Leitherst from a	iin 1	Liver Paymeten	0.11	Volume: at lease 10	
Unartic	17		Sharina Sverwein, Wells, John G	W design based learning: assessing student or thesi tanking and problem solving stalling	29.32	reconspiciosi Journal of Ta.,	Oct #	Abdrach	
GPTMax control activity	Ŀ		Reid O'Consor Browyey Nortan, Disghar	Supporting independence of many students' success is problem solving searing from Nerman intervi-	2022	Methematics Education Re.	Det B	Internet internet to be control types mechanistics to be by because they	anatic advantals
a small	9		Ihang Ling Caluting Sang heiging: Jhung HL	Nationalital probers pooling all electrotary indices multiplets the inspect of task former and it	2222	2014 - Methematica	019	where they are not applied in The the Associate bias, and it has been advised to a product of the state	phenomphot is proven as record in orbitrati, Character 21 to all provider
windowing windowing	Ŀ	÷	Resolution, Servis Gart, Millioni, Hesena, Dily Nervel	Actual and partiel vanishing transcoprisive impairment in mathematics problem activity	29.98	AP Conference Precedings	0119	afailtes mithematics trachers an United and whether they still see	e of a Recisel by fearfulle of the relative apply fearfulle and applying sector fearers. The
Trans Index	2		Monyori, M	Comparison between McKenedical Implane. Spliving Approach, Under Itanian and Top Teacher	3923	Journel of Mehani Neth	CHIB	configured the partnerse of an abung mathematics beathing its	ertuining heuristic blas
CROOM CREAT	P		Buratman Deda, Dairma, Vidi, Susially Utin Deay	Bubject specific pedagogic Problem selving skill and characteripro-seacher methematics in Indon	22.73	AP Contenence Proceedings	Out8	indegradues teachers (M x 22) a protegradues et. dents (M x 41) proportional resolution. We found	In the case of devoluting that all the participants
DATA SUS	-		Marney Gabriet Bostie, Jonathan G.; Fee, Minaret.	Fourth-grade students' concensions during multi- step problem solving	2923	Journal of Mathematical.	Octa	WHM offschub Jy the propertional demonstrated a cognitive process remanaged characteristics More	Induined o biox and they all a lef inflorion when several river are found that leach
ACTUM MOM			Instantion, there we below. Albeit	Nationation Development of Local Window Residic Methonation Education Resed Students	2933	Annelost.	2019	Tege	
Hiter by Authors 🗧	19		Observ.Jan Graniverg. Gertre	Teacher-student interaction supporting students' creative methematical research during problem	1922	Mittemetcal Trinking ent	Det 9		
м	-		Abditah, Variati Along Onione, Filal, Variannai	Internet Integrated Information Communication Technology Verberration Learning Model for Tec	2022	Annal Terri dari Aptikani	Della	Author Keywords Inscitle bac, milling - small	No Peer advest (and have,
Statute A view of the second	1	*	Agrantica, Yard Faddle, Massfirgarity, Tility, Matan	Analysis of Buthematics Commerciation Capabilities In Linear Program Problem Solving d	20,03	Autolasi Amal Pendili	0(18	Milliongoline, Magetine proving	Peter sharp
Abol, Ali Mohammadi B Abadi, Apus Maman		•	Leg Davis Luare; Sponer, Prof. Baarden, Afrik	Officacy of Paan Onlyand Methamatical Problem Solving instruction to Studients With Cetanolya S.	2928	Exceptional ENildren	0110	Charlos Key: jege0000	
Aberbichen, Markammael Aber Rabman, Strantan, N.	10		Save port, N; Hylynes, T	The development of mamematics problem sorting ability by Laking HWGL, tearning activities for start	20.25		Deta	Publisher: Isringer	
Abdentito,A Abdilleri	0		Davies, 2 Heampes/C Torsim, M	Scaters Adventy Quellers and Problem Selving Skills in Volterrelics	2028		0019	Type of Work:	
Abriul Haves Sits Refer Abriulan, Abriu Halim	ġ		Sarves-Tripe,Mariuel, Perves-Marithez,Isaki, D.,	A revealed harrevers to sharture revers learning scenarios a cligital wall as a reflective to	2023	International Journal of La.	Ort9	810.9	
Abdulan,N A Abdulan,Nasarudin		5	Vastaydt, Elevit Verschaftet, Non	The role of relational profession is and problem solving to 6- to 7- year-olds	2933	Educational Studies In Ma.	Det 8	if tops (ArA aptinger.com)	artisle/10.1007;y/21440
Abdullari, Mor 12081 Abdulrarim, Nahaed A.	*	•	Sribitravat, Josika	Problem Solving Asility in Garly Dillower S Maliteraulics Learning	20.02	international Journal of En.,	Oct 9	And a second	
Abedulariz,Nabeel Abidio, Choinel			Difaine Juan Lois Chapman Dive; Castro	Disspective primary teaching' initial wathemutical proplem-anning knowledge	20.22	international Journel of Ma.	Der9	A XA IC	
Abidin,Z. Abrahamsen.Dor			Poberin, Eller, Lite, UR	The Effectiveness of Google Meet on Workematics Problem Solving Ability of Cleas & Students	29.25	indoklutti Indonesia Ma.	Bet 9	15540, 10166-128	1000 m JP.
Abramewich S.			Hednik, Terljana; Kolar,	Problem Solving and Problem Pooling: Enven	39.22	Center for	(Cei 9	100	

Figure 1. File view Publish or perish at Mendeley

3. RESULTS

This section presents the results of mapping using Vosviewer, which analyzes the development of journal publications focused on solving mathematical problems in the Scopus and Google Scholar databases from 2016 to 2022. Figure 2 illustrates the relationship between problem-solving and other themes based on the authors' keywords. Figure 3 visualizes the trends in problem-solving research over the years, with darker colors representing earlier years (2016) and lighter colors representing more recent years (2022). The overlapping colors suggest that this research area is likely to continue evolving, offering further opportunities for exploration. Figure 4 depicts the study's density: lighter colors indicate more common research themes, while darker colors or faded keywords suggest topics that remain under discussion and are promising for ongoing research.

The visualization display in Figure 2 is grouped into various interconnected clusters, each represented by different colors. Cluster 3, which includes the keyword "problem-solving," shows its relationship with other themes, such as word problem-solving, as illustrated in Figure 5. In Figure 5, the keyword "problem-solving" is associated with several other terms and is prominently marked with a blue circle, indicating its central role in this research area. Figure 5 highlights the density of the study themes, where lighter colors indicate well-researched topics, and darker or faded keywords suggest less explored areas, presenting potential ideas for future research.

Figure 2. Network visualization of research themes in mathematical problem solving (2016-2022)

Figure 3. Temporal evolution and network of research themes in mathematical problem solving (2016-2022)

Figure 4. Density visualization of research themes in mathematical problem solving

Figure 5. Visualization in cluster 3

Figure 6 visualizes cluster 5 with the keywords used by problem-solving strategies only related to assessment keywords. In contrast to Figure 7a in cluster 7, there are three keywords used for problem-solving; the first-word problem-solving is related to engineering and mathematics, computer science education, blended learning, curriculum, educational robotics, computational thinking, data mining, collaboration, working memory, problem-posing, mathematics, Chinese, childhood. The two collaborative problem-solving approaches are related to STEM education, learning analytics, and problem-posing. Figure 7b in cluster 7 is computational problem-solving related to STEM education and computational thinking.

Figure 6. Visualization in cluster 5

Figure 7. Visualization in cluster 7

Figure 8, the keyword arithmetic problem solving, relates to game-based learning, reading, and embodied cognition. Research with this keyword can be in the form of the development of a game-based arithmetic learning methods, integration of literacy and mathematics in arithmetic learning, development of integrated curriculum, and several similar studies.

Figure 9, with the keywords mathematical problem solving, is related to embodied cognition, anxiety, metacognition, assessment, and comparative judgment. Research with these keywords can be, the role of metacognition in solving mathematical problems, the Development of innovative assessments for solving mathematical problems, Comparative studies on problem-solving assessment methods, and several similar studies.

Figure 8. Visualization in cluster 11

A Bibliometric Analysis of Mathematical Problem Solving: A State of The Art

an other could a reaction	mathematica pleaten sava	14	will ly		
embodied cognition		A series	undigentiation of the second		comparative judgement
jurit contents		allytha	to strake laked has	11	
Balles (Children Blackson			-		
Current and	discontiguentia	85	isassment	production (where	
and all the second	mathematical prob	lem solving	ingenies mani-		
athematics "mide					
A A HANN	metao	grition			
with the second second second	and the second second	aritea aritea aritea aritea aritea			
	and a second				
All All Sand					
wert gestiene	2/10		malioning		
	anapty looming				

Figure 9. Visualization in cluster 12

Furthermore, in Figure 10, the keywords mathematics problem solving are related to digital games, learning disabilities, at-risk, intervention programs, anxiety, and classroom practice. Examples in mathematics education research can be Using digital games to reduce students' mathematics anxiety, analyzing the impact of educational digital games on students' motivation and mathematical problem-solving performance, developing classroom practice models that combine digital games and intervention strategies to support at-risk students in mathematics learning, and several similar studies.

Figure 10. Visualization in cluster 14

In Figures 11(a) and (b), cluster 18, there are only two keywords that are not related to each other, namely problem-solving ability and problem-solving skills. Although these two keywords are used at the same time, they have different objectives, such as research examples, Meta-analysis of recent studies that distinguish between problem-solving abilities and skills in mathematics education, or Effectiveness of interventions targeted to improve general problem-solving abilities vs. specific mathematical problem-solving skills.

Figure 12. Visualization in cluster 19

Figure 12 Cluster 19, with the creative keyword "problem-solving," is related to exceptional talent, identification of gifted students, and STEM and spatial ability. Examples in mathematics education research can be the relationship between mathematical problem-solving creativity and exceptional talent in spatial abilities in secondary school students, Correlation analysis between STEM abilities and mathematical problem-solving creativity in identified gifted students, and several similar studies.

Figure 13. Visualization in cluster 20

In Figure 13, cluster 20 has two main themes, namely problem-solving and mathematics. These two themes are interrelated, and researchers use many as research themes. So that it causes a lot of themes or keywords that are researched a lot such as general curriculum access, autism, dyslexia, children, bilingualism, access to the general curriculum, attention, arithmetic, diagram, cognitive development, conceptual understanding, working memory, mathematical achievement, learning, teacher education, reasoning, cognitive reflection test, autism spectrum disorder, assessment, instruction, mathematics, mathematical equivalence, direct instruction, critical thinking, prospective teacher, academic achievement, challenging task, elementary mathematics, decimals, student attitude, elementary, elementary mathematics, meta-analysis, schema instruction, mathematics learning, mathematics education, engineering, feedback, affect, erroneous examples, problem posing, elementary school, cognitive load, calculus, augmented reality, blended learning, spatial ability, computational thinking, advance computing environment, active learning, creativity,and intelligent tutoring system.

The cluster above describes the networks that are interrelated with problem-solving mathematics. This visualization of the network is essential as a first step to understanding how previous research with similar themes is. With this analysis, we can find various related keywords that have been widely researched and research that is still small to see updates in research based on this bibliometric analysis technique.

Problem-solving is one of the discussions that has been studied for many years. However, its existence is still very much needed, considering that problem-solving is not only related to science at the education level but can also be applied in everyday life. For that research, we must choose the

primary source as a solid foundation to start a study. Based on the visualization results, some relationships between problem-solving and other keywords can be seen. Although various problem-solving deals with different topics, after further investigation, problem-solving itself is divided into domains, types of problems, processes, and solutions described by Jonassen [7] and Goldin [6]. Referring to the two expert opinions, the discussion focuses more on solving problems that have been researched by previous research. The searches can group the number of studies that are often and rarely studied. So, the results of this grouping offer gaps and novelty in problem-solving research.

Goldin [6] states there are three components of the type of problem, namely (1) initial condition (given state), (2) goal state, and (3) obstacle, namely anything that gets in the way between the initial condition and the goal condition. Thus, in describing the Goldin [6] problem, it must be (1) define a state space, (2) establish one or more initial states, (3) set one or more goals (goal states), and (4) establish a set of rules. Research that has been netted shows that many researchers consider the process of problem-solving or solving. Even though a problem that occurs in students begins with an initial state, in this condition, students may experience issues that will affect the final stage or goal state. This set of conditions is interrelated and requires special attention to overcome students' difficulties, so the table below compiles the research results related to problem-solving mathematics in school students.

			Problem-Solving											
No	Reference			Domain			Type of Task		k	Process Problem Solving	Solution			
		Concept	Rule	Proof	Posing	Solving	(Given State)	(State Place)	(Goal State)					
1	Abdullah et al. 2014									~	Students' attitudes to- wards mathe- matical word problem solving among elementary school students			
2	Abdullah et al. 2019					~				\checkmark				
3	Alibali et al. 2018					\checkmark					The new solution			
4	Amir, et al. 2018									\checkmark				
5	Bahar et al. 2015					V					Mathematical problem- solving performance in closed and open-ended problems.			
6	Barana et al. 2022					✓			\checkmark	~	Comprehensi on of the problem-atic situati-on, identification of the solving			

Table 1. SOTA (State of The Art) table of articles on mathematics problem-solving

		Problem-Solving									
No	Reference			Domain			Ту	pe of Tas	k	Process Problem Solving	Solution
		Concept	Rule	Proof	Posing	Solving	(Given State)	(State Place)	(Goal State)		
7	Bass et al		×								strategy, development of the solving process, argumentation of the chosen strategy, and appropriate
'	2017		·								
8	Bataluna et al. 2021									✓	The imple- mentation of a problem- solving approach is evaluated through problem- solving
9	Bazzini et al. 2014									~	Narratively- based problem- solving activity
10	Bossé et al. 2021					~		~		~	Cognitive processes used by students in mathematical problem- solving
11	Bruce et al. 2017					~					
12	Bubno et al 2019					\checkmark					
13	Caviola et al. 2018					~					Solve complex arithmetic problems.
14	Desli et al. 2020					V					Provide solutions from four different areas of mathematics (problem- solving tasks).
15	Doorman et al. 2019					\checkmark				\checkmark	Open-ended problem
16	Dung 2017	~									Assessing Vietnamese students' problem- solving skills

			Problem-Solving									
No	Reference	Domain T		pe of Tas	k	Process Problem Solving	Solution					
		Concept	Rule	Proof	Posing	Solving	(Given State)	(State Place)	(Goal State)	0		
											in dealing with	
											errors using	
											statistical tools.	
17	Fyfe et al.					\checkmark					Minimal	
	2017										corrective	
											feedback in a	
											problem-	
											solving task.	
18	Garcia et al. 2019					\checkmark				\checkmark		
19	Green et al.					\checkmark					To solve more	
	2017										complex	
											mathematical	
											problems.	
20	Haataja et al. 2019									\checkmark		
21	Harisman et					\checkmark					Background	
	al. 2020										behavior	
											students in	
											problem-	
											solving	
22	Hasan et al.									\checkmark	Problem-	
	2017										solving skills,	
											who are aware	
											of their think-	
											ing processes	
											and have self-	
											learning skills	
23	Hooglandet					\checkmark					Solve	
	al 2018										problem-	
	al. 2010										solving tasks	
											the posed	
											problems	
24	Hornburg					\checkmark					Solving	
	et al. 2017										mathematical	
											equivalence	
											problems	
25	Hwang et	\checkmark				✓					Five domains	
	al. 2019										when teaching	
											iractions in	
											problem	
											solving	
26	Irving et al					\checkmark					Solve	
20	2017										nonroutine	
	2017										algebraic tasks	
27	Iamaludin					\checkmark				\checkmark	Narrativized	
<u> </u>	et al. 2017										problem to be	
											solved	

			Problem-Solving									
No	Reference	Domain Type of Task					Process Problem Solving	Solution				
		Concept	Rule	Proof	Posing	Solving	(Given State)	(State Place)	(Goal State)			
28	Julie et al. 2018									✓	Understand- ing of its role during group mathematical problem- solving.	
29	Kenedi et al. 2019					\checkmark						
30	Lee et al. 2017			~							Polya	
31	Leo et al. 2019					~			\checkmark		Problem- solving skills and abilities	
32	Luria et al. 2017	~				\checkmark				~	Open-ended problems	
33	Masson et al. 2017					~					Solving arithmetic problems	
34	Mogari et al. 2017					~					Regular and non-routine problem- solving	
35	Mohtarom et al. 2017					V				\checkmark	Thinking process in solving mathematical problems	
36	Morsanyi et al. 2019						\checkmark		\checkmark			
37	Nur et al. 2020	~				~					One's thinking level to solve problems	
38	Ozcan et al. 20									\checkmark	•	
39	Parwati et al. 2018					~					Open and close the problem	
40	Passolunghi et al. 2019					~					Arithmetical problem- solving.	
41	Pelczer et al. 2014 Peltier et al.					✓				✓	Students' responses to multiple choice problems students' problem- solving behavior. To solve story	
	2017										problems	

		Problem-Solving									
No	Reference	Domain			Ту	pe of Tas	k	Process Problem Solving	Solution		
		Concept	Rule	Proof	Posing	Solving	(Given State)	(State Place)	(Goal State)		
43	Peltier et al. 2018					~					Solving word problem mathematics
44	Peltier et al. 2018					\checkmark				\checkmark	
45	Phonapichat et al. 2014.									\checkmark	The difficult- ies in mathe- matical problem solving for students' learning process
46	Psycharis et al. 2017									\checkmark	
47	Rahmi et al 2019					~					Solving mathematical problem
48	Root et al. 2018					\checkmark					
49	Root et al. 2019					\checkmark					
50	Samo et al. 2017	\checkmark									
51	Santia et al. 2019					\checkmark					Ill-structured problem
52	Savard et al. 2017					~					Solving word problem
53	Shen et al. 2018					\checkmark				\checkmark	Solve aljabar problem
54	Shin et al. 2017					 ✓ 					Word problem solving with fractions.
55	Sidney et al. 2019					~					Solved fraction division problems
56	Suarsana et al. 2019									√	Use online problem- posing to investigate non-routine problem solving
57	Suponta- wanit et al. 2021					~					Improve word problem- solving skills
58	Suprotun et al. 2019					~					Problem- solving skills and abilities

						Prot	olem-Solv	ing			
No	Reference			Domain			Ту	pe of Tas	k	Process Problem Solving	Solution
		Concept	Rule	Proof	Posing	Solving	(Given State)	(State Place)	(Goal State)		
59	Sutama et al. 2021					√					Students' metacognition cognitive styles in mathematics problem- solving
60	Swason et al. 2018									V	Math problem- solving processes and accuracy task
61	Tachie et al. 2019					~					Strategies in mathematics problem- solving
62	Viitala 2015									~	In problem- solving, the main focus is on the cognitive problem- solving process written
63	Wu et al. 2017					~					Arithmetic word problem- solving
64	Yeo et al. 2017						\checkmark		\checkmark	\checkmark	Open-ended tasks problem solving
65	Young et al. 2018					×				~	Stimulated- recall interviews allow researchers to ask questions that may reveal additional information about students' thinking and problem- solving processes.
66	Yuanita et al. 2018	~				~					Solve problems in the learning context.

						Prot	olem-Solv	ing			
No	Reference			Domain			Type of Task			Process Problem Solving	Solution
		Concept	Rule	Proof	Posing	Solving	(Given	(State	(Goal State)		
						,	State	Flace)	State)		
67	Yuanita et					\checkmark					Aim to solve
	al. 2018										arithmetic
											problems
68	Zakirova et					\checkmark	\checkmark			\checkmark	Solving
	al. 2019										problems with
											parameter
69	Zhou et al.										Solve the
	2017										task of
											arithmetical
											problem.

Table 1 presents a grouping derived from the Vosviewer visualization. Several articles center around the theme of "mathematical problem-solving." This grouping is categorized based on the contributions of key experts: (1) Polya for the problem domain, (2) Goldin for the type of task, and (3) Jonassen for the solution process. Each column reveals areas that have not been extensively explored by researchers, highlighting opportunities for new discussions to ensure that research on "mathematical problem-solving" continues to innovate and diversify.

This grouping is supported by primary expert sources, which serve as key references. The discussion section offers an overview of the gaps identified in Table 1, suggesting directions for future research. By focusing on these gaps, researchers can delve deeper into specific subjects and contribute to a broader understanding of mathematical problem-solving.

4. DISCUSSION

Table 2 provides examples of further research on problem-solving. Suggestions for further research can be combined with problematic research subjects. Table 2 shows gaps and novelty in a research topic.

Gaps	Research Topics or Research Design	Novelty
Problem domains that many researchers still need to explore.	Students' abilities or skills can explore problem situations from the type of problem students face. Some of these situations can later	In Figure 12 of cluster 20, there is an example of critical thinking. Further research could use thinking or similar
A type of problem in the problem	describe the difficulties/obstacles that students	abilities.
space (state place) that contains a series of steps/strategies that	have.	Types of problems in the problem space
researchers rarely notice	Some solutions of problem-solving such as open and close problems, runtime approaches,	Types of problems that are still little or not even used by other researchers.
Problem-solving can be considered the process of solving problems or just solving problems that adapt a theory.	and non-routine problems or elements of problem-solving. In this section, the researcher needs to explain the solutions offered to further explore the variety of research on problem-solving.	Offer solutions that can describe the problem clearly.

Table 2. Examples of research topics

Solutions to problem-solving can be viewed in several ways of solving.

By paying attention to the problem-solving process and offering solutions to problems such as routine and non-routine problems.

Problem-solving research with more specific methods such as qualitative that describes phenomena in a certain area / certain level of education.

Choosing the position of problemsolving as a process/applying a model from an expert theory By offering multiple solutions Qualitative methods of phenomenology troubleshooting process its domain to find evidence.

5. CONCLUSSION

Collecting data from over 2,959 articles related to problem-solving in mathematics, this research utilizes Vosviewer to visualize relationships based on the researchers' keywords. This method aids in identifying gaps and novelties within the specified research theme. The most frequently used keyword is "problem-solving," which appears in cluster 20 alongside the prominent theme of "mathematics." These two keywords are highly interconnected with other terms. Other clusters contain similar terms, showing relationships within each cluster.

However, further filtering by reading each article individually is necessary to identify more precise linkages. In mathematics education research, problem-solving studies can be applied to various cognitive and affective aspects, which can help describe and explore new findings in the field.

REFERENCES

- T. García, J. Boom, E. H. Kroesbergen, J. C. Núñez, and C. Rodríguez, "Planning, execution, and revision in mathematics problem solving: Does the order of the phases matter?" *Studies in Educational Evaluation*, vol. 61, pp. 83-93, 2019.
- [2] T. D. Prastiti, "Problem-based learning on the learning perseverance of Indonesian senior high school students in solving mathematical problems," *Bolema - Mathematics Education Bulletin*, vol. 64, no. 68, pp. 1206-1220, 2020.
- [3] I. Santia, Purwanto, A. Sutawidjadja, Sudirman, and Subanji, "Exploring Mathematical Representations in Solving Ill-Structured Problems: The Case of Quadratic Function," *Journal* on Mathematics Education, vol. 10, no. 3, pp. 365-378, 2019
- [4] M. N. Kholid, C. Sa'Dijah, E. Hidayanto, and H. Permadi, "Students' reflective thinking pattern changes and characteristics of problem solving," *Reflective Practice*, 2022.
- [5] National Council of Teachers of Mathematics, Principles and standards for school mathematics. Reston, VA: NCTM, 2000.
- [6] G. A. Goldin and C. E. Mcclintock, "Task Variabel In Mthematicl Problem Solving," *Mathematics, and Environmental Education*, Columbus, Ohio, 1979.
- [7] D. H. Jonassen, "Instructional design models for well-structured and ill-structured problemsolving learning outcomes," *Educational Technology Research and Development*, vol. 45, no. 1, pp. 65-94, 1997.
- [8] F. P. Yee, "Open Ended Problems for Higher Order Thinking in Mathematics," *Institute of Education (Singapore)*, vol. 20, pp. 49-57, 2002.
- [9] G. Polya, How to Solve It. A New Aspect of Mathematical Method. Princeton, NJ: Princeton University Press, 1985.

- [10] N. J. Van Eck and L. Waltman, "Citation-based clustering of publications using CitNetExplorer and VOSviewer," *Scientometrics*, vol. 111, no. 2, pp. 1053-1070, 2017.
- [11] A. H. Abdullah, S. S. Fadil, S. N. S. Abd Rahman, L. M. Tahir, and M. H. Hamzah, "Emerging patterns and problems of higher-order thinking skills (HOTS) mathematical problem-solving in the form-three Assessment (PT3)," *South African Journal of Education*, vol. 39, no. 2, 2019.
- [12] N. Abdullah, L. Halim, and E. Zakaria, "VStops: A Thinking Strategy and Visual Representation Approach in Mathematical Word Problem Solving toward Enhancing STEM Literacy," *Eurasia Journal of Mathematics, Science and Technology Education*, vol. 10, no. 3, pp. 165-174, 2014.
- [13] M. W. Alibali, N. M. Crooks, and N. M. McNeil, "Perceptual support promotes strategy generation: Evidence from equation solving," *The British Journal of Developmental Psychology*, vol. 36, no. 2, pp. 153-168, 2018.
- [14] M. F. Amir, "Interactive Multimedia Based Mathematics Problem Solving to Develop Students' Reasoning," 2019, doi: 10.31219/osf.io/qx63e.
- [15] A. Bahar and C. J. Maker, "Cognitive Backgrounds of Problem Solving: A Comparison of Open-ended vs. Closed Mathematics Problems," *Eurasia Journal of Mathematics, Science and Technology Education*, vol. 11, no. 6, pp. 1531-1546, 2015.
- [16] A. Barana, G. Boetti, and M. Marchisio, "Self-Assessment in the Development of Mathematical Problem-Solving Skills," *Education Sciences*, vol. 12, no. 2, pp. 81, 2022.
- [17] H. Bass, "Designing opportunities to learn mathematics theory-building practices," *Educational Studies in Mathematics*, vol. 95, pp. 229-244, 2017.
- [18] G. Bataluna, J. Medina, J. R. Luib, V. Sombilon, and E. Malicoban, "Development of Problem-Solving Approach Lesson Plans in Geometry," *Asia Research Network Journal of Education*, vol. 1, no. 3, pp. 121-135, 2021.
- [19] L. Bazzini and C. Sabena, "Participation in Mathematics Problem-Solving Through Gestures and Narration," in Educational Paths to Mathematics. Advances in Mathematics Education, U. Gellert, J. Giménez Rodríguez, C. Hahn, S. Kafoussi, Eds. Cham: Springer, 2015.
- [20] M. J. Bosse, E. S. Young, A. Bayaga, K. L. Davis, A. DeMarte, and C. Fountain, "Cognitive Processes in Problem Solving in a Dynamic Mathematics Environment," *International Journal For Mathematics Teaching And Learning*, vol. 21, no. 2, pp. 174-196, 2020.
- [21] S. Caviola, I. C. Mammarella, M. Pastore, and J-A. LeFevre, "Children's Strategy Choices on Complex Subtraction Problems: Individual Differences and Developmental Changes," *Frontiers* in Psychology, vol. 9, pp. 1209, 2018
- [22] D. Desli and A. Lioliou, "Relationship between Computational Estimation and Problem Solving," *International Electronic Journal of Mathematics Education*, vol. 15, no. 3, pp. 602, 2020.
- [23] M. Doorman et al., "Making and Implementing a Mathematics Day Challenge as a Makerspace for Teams of Students," *International Journal of Science and Mathematics Education*, vol. 17, no. 1, pp. 149-165, 2019.
- [24] E. R. Fyfe and B. Rittle-Johnson, "Mathematics practice without feedback: A desirable difficulty in a classroom setting," *Instructional Science*, vol. 45, pp. 177-194, 2017.
- [25] C. T. Green, S. A. Bunge, V. Briones Chiongbian, M. Barrow, and E. Ferrer, "Fluid reasoning predicts future mathematical performance among children and adolescents," *Journal of Experimental Child Psychology*, vol. 157, pp. 125-143, 2017.
- [26] E. Haataja, E. Garcia Moreno-Esteva, V. Salonen, A. Laine, M. Toivanen, and M. S. Hannula,

"Teacher's visual attention when scaffolding collaborative mathematical problem solving," *Teaching and Teacher Education*, vol. 86, pp. 102877, 2019.

- [27] H. Viitala, "Emma's mathematical thinking, problem solving and affect," in CERME 9 Ninth Congress of the European Society for Research in Mathematics Education, Prague, Czech Republic, 2015, pp. 1294-1300.
- [28] Y. Harisman, M. S. Noto, and W. Hidayat, "Experience student background and their behavior in problem solving," *Infinity*, vol. 9, no. 1, pp. 59-68, 2020.
- [29] N. M. Hassan and S. Rahman, "Problem Solving Skills, Metacognitive Awareness, and Mathematics Achievement: A Mediation Model," *New Educational Review*, vol. 49, pp. 201-212, 2017.
- [30] K. Hoogland, B. Pepin, J. de Koning, A. Bakker, and K. Gravemeijer, "Word problems versus image-rich problems: an analysis of effects of task characteristics on students' performance on contextual mathematics problems," *Research in Mathematics Education*, vol. 20, pp. 37-52, 2018.
- [31] C. B. Hornburg, M. L. Rieber, and N. M. McNeil, "An integrative data analysis of gender differences in children's understanding of mathematical equivalence," *Journal of Experimental Child Psychology*, vol. 163, pp. 140-150, 2017.
- [32] J. Hwang, P. J. Riccomini, S. Y. Hwang, and S. Morano, "A systematic analysis of experimental studies targeting fractions for students with mathematics difficulties," *Learning Disabilities Research* & Practice, vol. 34, no. 1, pp. 47, 2019.
- [33] T. S. Irving and P. Agarwal, "Conceptualizing Perseverance in Problem Solving as Collective Enterprise," Mathematical Thinking and Learning, vol. 19, no. 2, pp. 115-138, 2017.
- [34] A. Jamaludin and D. Hung, "Problem-solving for STEM learning: navigating games as narrativized problem spaces for 21st century competencies," *Research and Practice in Technology Enhanced Learning*, vol. 12, no. 1, pp. 1, 2017.
- [35] A. K. Kenedi, Y. Helsa, Y. Ariani, M. Zainil, and S. Hendri, "Mathematical connection of elementary school students to solve mathematical problems," *Journal on Mathematics Education*, vol. 10, no. 1, pp. 69-79, 2019.
- [36] C. I. Lee, "An Appropriate Prompts System Based on the Polya Method for Mathematical Problem-Solving," *Eurasia Journal of Mathematics, Science and Technology Education*, vol. 13, no. 3, pp. 893-910, 2017.
- [37] I. D. Leo, K. R. Muis, C. A. Singh, and C. Psaradellis, "Curiosity... Confusion? Frustration! The role and sequencing of emotions during mathematics problem solving," *Contemporary Educational Psychology*, 2019.
- [38] S. R. Luria, B. Sriraman, and J. C. Kaufman, "Enhancing equity in the classroom by teaching for mathematical creativity," *ZDM Mathematics Education*, vol. 49, pp. 1033-1039, 2017.
- [39] N. Masson, M. Pesenti, and V. Dormal, "Impact of optokinetic stimulation on mental arithmetic," *Psychological Research*, vol. 81, pp. 840-849, 2017.
- [40] K. Morsanyi, N. Ní Cheallaigh, and R. Ackerman, "Mathematics Anxiety and Metacognitive Processes," *Psihologijske Teme*, vol. 28, no. 1, pp. 147-169, 2019.
- [41] Muhtarom, Y. H. Murtianto, and Sutrisno, "Thinking process of students with high-mathematics ability: (a study on QSR NVivo 11-assisted data analysis)," *International Journal of Applied Engineering Research*, vol. 12, no. 17, pp. 6934-6940, 2017.
- [42] A. S. Nur, S. B. Waluya, R. Rochmad, and W. Wardono, "Contextual Learning with Ethnomathematics In Enhancing the Problem Solving Based on Thinking Levels," *Journal of*

Research and Advances in Mathematics Education, vol. 5, no. 3, pp. 331-344, 2020.

- [43] Z. Ç. Özcan and A. Eren Gümüş, "A modeling study to explain mathematical problem-solving performance through metacognition, self-efficacy, motivation, and anxiety," *Australian Journal* of Education, vol. 63, no. 1, pp. 116-134, 2019.
- [44] M. C. Passolunghi, E. Cargnelutti, and S. Pellizzoni, "The relation between cognitive and emotional factors and arithmetic problem-solving," *Educational Studies in Mathematics*, vol. 100, pp. 271-290, 2019.
- [45] I. Pelczer, F. M. Singer, and C. Voica, "Dynamic Thinking and Static Thinking in Problem Solving: Do they Explain Different Patterns of Students' Answers?" Procedia - Social and Behavioral Sciences, vol. 128, pp. 217-222, 2014.
- [46] C. J. Peltier, K. J. Vannest, and J. J. Marbach, "A Meta-Analysis of Schema Instruction Implemented in Single-Case Experimental Designs," *The Journal of Special Education*, vol. 52, no. 2, pp. 89-100, 2018.
- [47] C. Peltier and K. J. Vannest, "A Meta-Analysis of Schema Instruction on the Problem-Solving Performance of Elementary School Students," *Review of Educational Research*, vol. 87, no. 5, pp. 899-920, 2017.
- [48] C. Peltier and K. J. Vannest, "The Effects of Schema-Based Instruction on the Mathematical Problem Solving of Students With Emotional and Behavioral Disorders," *Behavioral Disorders*, vol. 43, no. 2, pp. 277-289, 2018.
- [49] P. Phonapichat, S. Wongwanich, and S. Sujiva, "An Analysis of Elementary School Students' Difficulties in Mathematical Problem Solving," *Procedia - Social and Behavioral Sciences*, vol. 116, pp. 3169-3174, 2014.
- [50] S. Psycharis and M. Kallia, "The effects of computer programming on high school students' reasoning skills and mathematical self-efficacy and problem-solving," *Instructional Science*, vol. 45, pp. 583-602, 2017.
- [51] N. Rahmi, I. M. Arnawa, and Yerizon, "Preparation Development Of Learning Device Problem Based Learning Model With Scientific Approach To Improve Mathematical Problem Solving Ability," *International Journal of Scientific & Technology Research*, vol. 8, pp. 522-529, 2019.
- [52] J. R. Root, S. K. Cox, and S. Gonzalez, "Using Modified Schema-Based Instruction with Technology-Based Supports to Teach Data Analysis," *Research and Practice for Persons with Severe Disabilities*, vol. 44, no. 1, pp. 53-68, 2019
- [53] J. R. Root, S. K. Cox, N. Hammons, A. F. Saunders, and D. Gilley, "Contextualizing mathematics: Teaching problem solving to secondary students with intellectual and developmental disabilities," *Intellectual and Developmental Disabilities*, vol. 56, no. 6, pp. 442-457, 2018
- [54] D. D. Samo, Darhim, and B. G. Kartasasmita, "Culture-based contextual learning to increase the problem-solving ability of first year university student," *Journal on Mathematics Education*, vol. 9, no. 1, pp. 81-93, 2018.
- [55] A. Savard and E. Polotskaia, "Who's wrong? Tasks fostering understanding of mathematical relationships in word problems in elementary students," *ZDM Mathematics Education*, vol. 49, pp. 823-833, 2017
- [56] Z. Shen, V. Popov, A. B. Delahay et al., "Item strength affects working memory capacity," *Memory & Cognition*, vol. 46, pp. 204-215, 2018.
- [57] M. Shin and D. P. Bryant, "Improving the Fraction Word Problem Solving of Students With

Mathematics Learning Disabilities: Interactive Computer Application," Remedial and Special Education, vol. 38, no. 2, pp. 76-86, 2017.

- [58] P. G. Sidney, C. A. Thompson, and F. Rivera, "Number lines, but not area models, support children's accuracy and conceptual models of fraction division," *Contemporary Educational Psychology*, 2019.
- [59] I. M. Suarsana, I. A. P. D. Lestari, and N. M. S. Mertasari, "The Effect of Online Problem Posing on Students' Problem-Solving Ability in Mathematics," *International Journal of Instruction*, vol. 12, no. 1, pp. 809-820, 2019.
- [60] P. Supontawanit and S. Lertlit, "Usage of reading comprehension to enhance word problem solving skills in mathematics," *Journal of English Educators Society*, vol. 6, no. 2, pp. 260-266, 2021.
- [61] H. L. Swanson and M. McMurran, "The impact of working memory training on near and far transfer measures: Is it all about fluid intelligence?" *Child Neuropsychology*, vol. 24, no. 3, pp. 370-395, 2018.
- [62] S. A. Tachie, "Meta-cognitive Skills and Strategies Application: How this Helps Learners in Mathematics Problem-solving," *Eurasia Journal of Mathematics, Science and Technology Education*, vol. 15, no. 5, pp. 1702, 2019.
- [63] H. Viitala, "Emma's mathematical thinking, problem solving and affect," 2015.
- [64] S. S. Wu, L. Chen, C. Battista, A. K. Smith Watts, E. G. Willcutt, and V. Menon, "Distinct influences of affective and cognitive factors on children's non-verbal and verbal mathematical abilities," *Cognition*, vol. 166, pp. 118-129, 2017.
- [65] J. B. W. Yeo, "Development of a Framework to Characterise the Openness of Mathematical Tasks," *International Journal of Science and Mathematics Education*, vol. 15, pp. 175-191, 2017.
- [66] A. E. Young and F. C. Worrell, "Comparing Metacognition Assessments of Mathematics in Academically Talented Students," *Gifted Child Quarterly*, vol. 62, no. 3, pp. 259-275, 2018.
- [67] P. Yuanita, H. Zulnaidi, and E. Zakaria, "The effectiveness of Realistic Mathematics Education approach: The role of mathematical representation as mediator between mathematical belief and problem solving," *PLaS ONE*, vol. 13, no. 9, pp. e0204847, 2018.
- [68] V. G. Zakirova, N. A. Zelenina, L. M. Smirnova, and O. A. Kalugina, "Methodology of Teaching Graphic Methods for Solving Problems with Parameters as a Means to Achieve High Mathematics Learning Outcomes at School," *Eurasia Journal of Mathematics, Science and Technology Education*, vol. 15, no. 9, pp. 1741, 2019.