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Abstract  
The rainbow connection number of a graph 𝐺 denoted by 𝑟𝑐(𝐺) is the minimum number of colors 

used to color the edges in 𝐺, such that every pair of vertices is connected by a path with all different 

colors. In 2008, Chartrand, et al. first introduced the concept of rainbow connection numbers. They 

introduced it as an edge coloring on a graph that refers to the path of each pair of vertices. An octopus 

graph, with 𝑚 legs denoted by 𝑂𝑚, is a graph constructed from a fan graph 𝐹𝑚 and a star graph 𝑆𝑚. 

The graphs studied in this article are two classes of octopus iteration graphs, namely the octopus chain 

graph and the octopus ladder graph. The octopus chain graph, denoted by 𝑂2(𝑛),  is a graph constructed 

from 𝑛 copies of 𝑂2 and connecting one leg of the 𝑖-th copy to the (𝑖 + 1) − 𝑡ℎ copy, for every 𝑖 =

1, 2, … , 𝑛 − 1. The octopus ladder graph, denoted by 𝑂2′(𝑛), is a graph constructed from graph  𝑂2(𝑛) 

by connecting one of vertex of degree two of the 𝑖-th copy to the (𝑖 + 1) − 𝑡ℎ copy. In this research, 

we determine the rainbow connection number of the octopus chain graphs 𝑂2(𝑛) and The octopus 

ladder graphs 𝑂2′(𝑛). We obtain that 𝑟𝑐(𝑂2(𝑛)) = 3𝑛, for 𝑛 ≥ 1 and 𝑟𝑐(𝑂2′(𝑛)) = 3𝑛 − 1,              

for 𝑛 ≥ 2.  

Keywords: Classes of octopus iteration graphs; Octopus chain graph; Octopus ladder graph; Rainbow 
connection number. 
 

Abstrak 
Bilangan terhubung pelangi pada graf 𝐺 dinotasikan dengan 𝑟𝑐(𝐺) merupakan jumlah warna minimum yang 

digunakan untuk mewarnai sisi pada 𝐺, sehingga setiap pasang titik dihubungkan oleh suatu lintasan dengan warna 
yang berbeda semua. Pada tahun 2008, Chartrand dkk. pertama kali memperkenalkan konsep bilangan terhubung 
pelangi. Chartrand, dkk. memperkenalkannya sebagai pewarnaan sisi pada graf yang mengacu pada lintasan setiap 

pasang titiknya. Graf gurita dengan 𝑚 kaki dinotasikan dengan 𝑂𝑚 adalah graf yang dikonstruksi dari graf kipas 

𝐹𝑚 dan graf bintang 𝑆𝑚. Graf yang dikaji dalam artikel ini merupakan dua kelas graf iterasi gurita, yaitu graf rantai 

gurita dan graf tangga gurita. Graf rantai gurita yang dinotasikan dengan 𝑂2(𝑛) adalah graf yang dikonstruksi dari 

𝑛 copy graf 𝑂2 dan menghubungkan satu kaki salinan ke−𝑖 ke salinan ke−𝑖 + 1, untuk setiap 𝑖 = 1,2, … ,        
𝑛 − 1. Graf tangga gurita yang dinotasikan dengan 𝑂2′(𝑛) adalah graf yang dibangun dari graf  𝑂2(𝑛) dengan 

menghubungkan salah satu titik berderajat dua salinan dari graph ke−𝑖 ke salinan ke−𝑖 + 1. Pada penelitian ini, 

ditentukan bilangan terhubung pelangi pada graf rantai gurita 𝑂2(𝑛) dan graf tangga gurita 𝑂2′(𝑛). Kami memperoleh 

bahwa 𝑟𝑐(𝑂2(𝑛)) = 3𝑛 untuk 𝑛 ≥ 1 dan 𝑟𝑐(𝑂2′(𝑛)) = 3𝑛 − 1, untuk 𝑛 ≥ 2.  
Kata Kunci: Kelas graf iterasi gurita; Graf rantai gurita; Graf tangga gurita; Bilangan terhubung pelangi. 
 

2020MSC: 05C15, 05C40.   

1. INTRODUCTIONS 

Graph theory is a branch of mathematics that studies the properties of graphs. In 1736, a scientist 
from Switzerland named Leonhard Euler attempted to solve the problem of the Königsberg bridge 
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over the Pregel River in Russia. Leonhard Euler modeled the problem as a graph, referring to the land 
as vertex and the bridges as edge connecting them. A graph is a pair 𝐺 = (𝑉, 𝐸) of sets such that 𝐸 ⊆

[𝑉]2, thus the elements of 𝐸 are 2-element subsets of 𝑉. The elements of 𝑉 are the vertices of the 
graph 𝐺, and the elements of 𝐸 are the edges of the graph 𝐺 [1]. An example graph will be provided 

in Figure 1 to make it easier to understand. From Figure 1, graph 𝐺 have a vertex-set 𝑉 = {1,2,3,4}, the 

edge-set 𝐸 = {(1,2); (2,3); (3,4); (1,4); (1,3)}, and the set of elements [𝑉]2 =

{(1,2); (1,3); (1,4); (2,3); (2,4); (3,4)} such that 𝐸 ⊆ [𝑉]2. 

 

Figure 1. Graph 𝐺 

Graph theory continues to evolve and produce new concepts that can be studied, one of which 
is the concept of rainbow connectivity. The concept of rainbow connectivity is an evolution of edge 
coloring, and this theory was first introduced in 2008 by Chartrand et al. The concept of the rainbow 
connection originated from communication issues between U.S. government agencies and their agents 
following the terrorist attacks on the eleventh of September 2001, which forced both parties to 
communicate through codes for national security reasons. Procedures must remain in place to ensure 
that agents have appropriate access to information. To address this issue, a transfer pathway between 
agents was created. However, due to the large number of agents and passwords, to prevent leaks, a 
minimum password requirement has been established so that every two agents have different 
passwords. The situation can be modeled by applying the concept of rainbow interconnectedness. In 
that problem, the nodes are represented as vertices and the edges as sides, with the minimum edges 
depicted as connected rainbow numbers in a graph.  

Edge coloring is the assignment of colors to all edges of a graph. Another type of graph edge 

coloring is rainbow coloring, where no two edges in the graph have the same color [2]. Graph 𝐺 is a 
rainbow path if each of its edges has a different color. A graph 𝐺 is rainbow connected if it is connected 
by a rainbow path between every two vertices in 𝐺. The minimum number of colors used to color 
each edge of 𝐺 such that 𝐺 is rainbow connected is called the rainbow connection number of 𝐺, 
denoted as 𝑟𝑐(𝐺). The distance 𝑑𝐺(𝑥, 𝑦) in 𝐺 between two vertices 𝑥, 𝑦 is the length of path from 𝑥 −
𝑦 in 𝐺; if no such path is like that, we establishing 𝑑(𝑥, 𝑦) ≔ ∞. The farthest distance between two 
vertices in 𝐺 is the diameter of 𝐺, denoted as 𝑑𝑖𝑎𝑚 (𝐺) [1]. A graph 𝐺 with  𝑑𝑖𝑎𝑚 (𝐺) = 3 is given in 
Figure 2. 

Theorem 1 [2]. If 𝐺 is a connected graph with |𝑉(𝐺)| ≥ 1 and its diameter is 𝑑𝑖𝑎𝑚(𝐺), then 
𝑑𝑖𝑎𝑚(𝐺) ≤ 𝑟𝑐(𝐺).  

The Figure 3 shows a graph 𝐺 connected in a rainbow using 3 colors. Thus, 𝑟𝑐(𝐺) = 3. In this case, 
the 𝑑𝑖𝑎𝑚 (𝐺) = 3 = 𝑟𝑐(𝐺). 
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Figure 2. Graph 𝐺 with 𝑑𝑖𝑎𝑚(𝐺) = 3 

 

Figure 3. Rainbow coloring on graph 𝐺 

A path graph is a non-empty graph 𝑃 = (𝑉, 𝐸) from the set 𝑉 = {𝑥0, 𝑥1, … , 𝑥𝑘} and 𝐸 =

{𝑥0𝑥1, 𝑥1𝑥2, … , 𝑥𝑘−1𝑥𝑘}, with all 𝑥𝑖 being distinct. The vertices 𝑥0 and 𝑥𝑘 are connected by 𝑃 where 

the number of edges in the path is referred to as the length. The length of the path with 𝑚 vertices is 
denoted as 𝑃𝑚 [1]. A fan graph 𝐹𝑚 is a graph obtained by combining all the vertices from the path 
graph 𝑃𝑚 into a vertex called the center point. Thus, the fan graph consists of 𝑚 + 1 vertices and 
2𝑚 − 1 edges, where 𝑚 ≥ 2. A star graph is a graph with 𝑚 + 1 vertices, with one vertex of degree 𝑚 

known as the center vertex connected to 𝑚 other vertices of degree 1 called leaves, denoted as 𝑆𝑚. 
An octopus graph with 𝑚 legs is denoted as 𝑂𝑚, (𝑚 ≥ 2) and is obtained by attaching the center 
vertex of the fan graph 𝐹𝑚, (𝑚 ≥ 2) to the center point of the star graph 𝑆𝑚, with any positive integer 
𝑚. The octopus graph 𝑂𝑚 has 2𝑚 + 1 vertices and 3𝑚 − 1 edges and has a diameter of 𝑑𝑖𝑎𝑚(𝑂𝑚) =
2. As an illustration, fan graph 𝐹3, star graph 𝑆6, and octopus graph 𝑂3 are depicted in Figure 4. 

 
Figure 4. Fan Graph 𝐹3, Star Graph 𝑆6, and Octopus Graph 𝑂3 

In particular, the graph studied in this graph is constructed from the octopus graph 𝑂2, as given 
in Figure 5. There are some previous research topics regarding rainbow-connected numbers such as 
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the number of edge colorings [3], rainbow cycles in edge coloring graphs [4], antiprism graphs and 
complete graphs [5], flower "snark" graphs [6], on butterfly graphs, benes, and torus [7], on flower 
graphs and lemon graphs [8], on planter graphs and octopus graphs [9], on prism graphs and path 
graphs [10], on the amalgamation of tadpole graphs and sun graphs [11], as well as on the corona 
product of sandat graphs [12]. In addition to the rainbow connection number, the prime labeling of 
the octopus graph has been studied [13]. 

 

Figure 5. Octopus Graph 𝑂2 

Octopus iteration graphs are graphs formed by repeatedly duplicating the octopus graph and 
connecting the copies in a specific manner. In this paper, we determine the rainbow connection 
number of two classes of octopus iteration graphs: the octopus chain graph 𝑂2(𝑛) and the octopus 
ladder graph 𝑂2′(𝑛). 

 
2. METHODS 

This research employs literature study and analytical methods. The literature study method is a 
research approach that involves examining books on graph theory and research journals, particularly 
those studying the rainbow connection number of a graph and related topics. Meanwhile, the analytical 
method involves solving mathematical problems through mathematical proof and formulas. The steps 
used are as follows: 
1. Conduct a literature study on rainbow connection number of graphs. 
2. Define two classes of the octopus iteration graphs constructed from octopus graph 𝑂2 namely 

the octopus chain graph 𝑂2(𝑛), for every 𝑛 ≥ 1 and the octopus ladder graph 𝑂2′(𝑛), for every 
𝑛 ≥ 2. 

3. Determine the rainbow connection number for the octopus chain graph 𝑂2(𝑛) and octopus 
ladder graph 𝑂2′(𝑛). 

4. Formulate a theorem and prove its validity mathematically. 
5. Make conclusions based on the results obtained. 

3. RESULTS 

In previous research, Fransiskus Fran et al. [9] determined the rainbow connection number of 
the octopus graph 𝑂𝑚, for 2 ≤ 𝑚 ≤ 4. In this section, we present definitions of octopus chain graphs 
and octopus ladder graphs. Then, we formulate two theorems about the rainbow connection number 
of these graphs and their proofs. 
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Definition 1. The octopus chain graph, denoted by 𝑂2(𝑛), is a graph constructed from 𝑛 copies of 

𝑂2 and connecting one leg of the 𝑖-th copy to the (𝑖 + 1) − 𝑡ℎ copy, for every 𝑖 = 1, 2,… , 𝑛 − 1 and 
𝑛 ≥ 1.  

Graph 𝑂2(𝑛) is given in Figure 6. Note that 𝑂2(1) ≅ 𝑂2. 

 

Figure 6. Graph 𝑂2(𝑛) 

Definition 2. The octopus ladder graph denoted by (𝑂2′(𝑛)) is a graph constructed from graph  𝑂2(𝑛) 

by connecting vertex 𝑣5
𝑖  to a vertex 𝑣4

𝑖+1, for every 𝑖 = 1, 2, … , 𝑛 − 1.  

Graph 𝑂2′(𝑛) is given in Figure 7. 

 

Figure 7. Graph 𝑂2′(𝑛) 

The notation of the vertex  𝑣𝑗
𝑖 on the octopus chain graph 𝑂2(𝑛) and the octopus chain graph 𝑂2(𝑛) 

shows the vertex 𝑗 on the 𝑖-th copy. Next, the following theorems give the rainbow connection 

number on octopus chain graphs and octopus ladder graphs.  

Theorem 2. For any 𝑛 ≥ 1, 𝑟𝑐(𝑂2(𝑛)) = 3𝑛. 

Proof.  
The octopus chain graph 𝑂2(𝑛) is a graph that has a vertex-set: 

𝑉(𝑂2(𝑛)) = {𝑣𝑗
𝑖|1 ≤ 𝑖 ≤ 𝑛, 𝑗 = 1,2,3,4,5}, 

and edge-set: 

𝐸(𝑂2(𝑛)) = {𝑣1
𝑖𝑣3
𝑖 , 𝑣2

𝑖𝑣3
𝑖 , 𝑣4

𝑖𝑣3
𝑖 , 𝑣5

𝑖𝑣3
𝑖 , 𝑣4

𝑖𝑣5
𝑖  |1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣2

𝑖𝑣1
𝑖+1|1 ≤ 𝑖 ≤ 𝑛 − 1}, 

then |𝑉(𝑂2(𝑛))| = 5𝑛 and |𝐸(𝑂2(𝑛))| = 6𝑛 − 1, fo 𝑛 ≥ 1. 
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Next, we divide this proof into two cases.  

Case 1. For 𝑛 = 1. 

First, we prove to a lower bound for 𝑟𝑐(𝑂2(1)). Let 𝑐 be any coloring of the edges of the graph 𝑂2(1). 

It will be shown that 𝑟𝑐(𝑂2(1)) ≥ 3. Consider that edges 𝑣1
1𝑣3

1 and 𝑣2
1𝑣3

1 must be colored differently. 

If not, there will be no rainbow path from 𝑣1
1 to 𝑣2

1 with a length at most 3.  Assume 𝑐(𝑣1
1𝑣3

1) = 1 and 

𝑐(𝑣2
1𝑣3

1) = 2. In addition, the remaining three edges must be colored differently otherwise there is no 

rainbow path from the leg to the vertex 𝑣4
1 or 𝑣5

1. So, it requires at least 3 colors to guarantee that 
there is a rainbow path from every pair of vertices in the graph 𝑂2(1). Thus, 𝑟𝑐(𝑂2(1)) ≥ 3.  

Next, we prove the upper bound of 𝑂2(1). 

Define the coloring of edges 𝑐: 𝐸(𝑂2(1)) → {1,2,3} as follows. 

𝑐(𝑒) = {

1,                                   𝑖𝑓 𝑒 = 𝑣1
1𝑣3

1 

2,                                    𝑖𝑓 𝑒 = 𝑣2
1𝑣3

1

3,             𝑖𝑓 𝑒 = 𝑣3
1𝑣4

1; 𝑣3
1𝑣5

1; 𝑣4
1𝑣5

1

 

It will be shown that for each pair of vertices on 𝑂2(1), there is a rainbow path.  

• For the pair of vertices 𝑣1
1 to 𝑣2

1,  

The rainbow path is 𝑣1
1 − 𝑣3

1 − 𝑣2
1. 

• For the pair of vertices 𝑣1
1 to 𝑣4

1,  

The rainbow path is 𝑣1
1 − 𝑣3

1 − 𝑣4
1. 

• For the pair of vertices 𝑣1
1 to 𝑣5

1,  

The rainbow path is 𝑣1
1 − 𝑣3

1 − 𝑣5
1. 

• For the pair of vertices 𝑣2
1 to 𝑣5

1,  

The rainbow path is 𝑣2
1 − 𝑣3

1 − 𝑣4
1 − 𝑣5

1. 
For other pairs of vertices not explicitly mentioned in the cases above, the rainbow path for those 

pairs of vertices is contained in one of those cases. Since 𝑟𝑐(𝑂2(1)) ≤ 3 and 𝑟𝑐(𝑂2(1)) ≥ 3, then 

𝑟𝑐(𝑂2(1)) = 3. 

Case 2. For 𝑛 ≥ 2. 

First, we prove the lower bound for 𝑟𝑐(𝑂2(𝑛)), for 𝑛 ≥ 2. It will be shown that 𝑟𝑐(𝑂2(𝑛)) ≥ 3𝑛 Let 
𝑐 be any coloring of the edges of the graph 𝑂2(𝑛). As in the proof of Case 1, the graph 𝑂2(1) (the 

first copy of 𝑂2(𝑛), for 𝑛 ≥ 2) must be colored with 3 colors so that there is a rainbow path for every 

pair of vertices in the graph. Now, consider the edges 𝑣2
𝑖𝑣1

𝑖+1, for 1 ≤ 𝑖 ≤ 𝑛 − 1 must be colored 

differently since the edges are bridges Furthermore, edges 𝑣1
𝑖𝑣3
𝑖  and 𝑣2

𝑖𝑣3
𝑖  for 2 ≤ 𝑖 ≤ 𝑛 must be 

colored differently such that there is a rainbow path with a length at most 3𝑛 from vertex 𝑣1
1 to 𝑣2

𝑖 . 
So, it means we requires at least 3 + (𝑛 − 1) + 2(𝑛 − 1) = 3𝑛 colors to guarantee that there is a 

rainbow path from every pair of vertices. Thus,  𝑟𝑐(𝑂2(𝑛)) ≥ 3𝑛. Then, we will determine the upper 

bound of 𝑂2(𝑛), for 𝑛 ≥ 𝑎.   Define the edge coloring 𝑐: 𝐸(𝑂2(𝑛)) → {1,2,… ,3𝑛} as follows.  



Rainbow Connection Number of Octopus Iteration Graphs  

211 | InPrime: Indonesian Journal of Pure and Applied Mathematics 
 

𝑐(𝑒) = {

1,                                   𝑖𝑓 𝑒 = 𝑣1
1𝑣3

1 

2,                                    𝑖𝑓 𝑒 = 𝑣2
1𝑣3

1

3,             𝑖𝑓 𝑒 = 𝑣3
1𝑣4

1; 𝑣3
1𝑣5

1; 𝑣4
1𝑣5

1

, 

and for every 2 ≤ 𝑖 ≤ 𝑛,  

𝑐(𝑒) =

{
 
 

 
 
1,                               𝑖𝑓 𝑒 = 𝑣3

𝑖𝑣4
𝑖  

3,                                𝑖𝑓 𝑒 = 𝑣3
𝑖𝑣5
𝑖

3𝑖 − 2,                 𝑖𝑓 𝑒 = 𝑣2
𝑖−1𝑣1

𝑖

3𝑖 − 1,                     𝑖𝑓 𝑒 = 𝑣1
𝑖𝑣3
𝑖

3𝑖,                𝑖𝑓 𝑒 = 𝑣2
𝑖𝑣3

𝑖 ; 𝑣4
𝑖𝑣5
𝑖

. 

It will be shown that for each pair of vertices on 𝑂2(𝑛), there is a rainbow path.  

• For the pair of vertices 𝑣1
2 to 𝑣2

𝑛, the rainbow path is 𝑣1
2 − 𝑣3

2 − 𝑣2
2 − 𝑣1

3 − 𝑣3
3 − 𝑣2

3 −⋯− 𝑣2
𝑛. 

• For the pair of vertices 𝑣1
2 to 𝑣4

𝑛, the rainbow path is 𝑣1
2 − 𝑣3

2 − 𝑣2
2 − 𝑣1

3 − 𝑣3
3 − 𝑣5

3 − 𝑣4
3 −⋯− 𝑣4

𝑛. 

• For the pair of vertices 𝑣4
2 to 𝑣2

𝑛, the rainbow path is 𝑣4
2 − 𝑣3

2 − 𝑣2
2 − 𝑣1

3 − 𝑣3
3 − 𝑣2

3 −⋯− 𝑣2
𝑛. 

• For the pair of vertices 𝑣4
2 to 𝑣5

𝑛, the rainbow path is 𝑣4
2 − 𝑣3

2 − 𝑣2
2 − 𝑣1

3 − 𝑣3
3 − 𝑣4

3 − 𝑣5
3 −⋯− 𝑣5

𝑛. 

• For the pair of vertices 𝑣5
2 to 𝑣2

𝑛, the rainbow path is 𝑣5
2 − 𝑣3

2 − 𝑣2
2 − 𝑣1

3 − 𝑣3
3 − 𝑣2

3 −⋯− 𝑣2
𝑛. 

• For the pair of vertices 𝑣5
2 to 𝑣5

𝑛, the rainbow path is 𝑣5
2 − 𝑣3

2 − 𝑣2
2 − 𝑣1

3 − 𝑣3
3 − 𝑣4

3 − 𝑣5
3 −⋯− 𝑣5

𝑛. 
For other pairs of vertices not explicitly mentioned in the cases above, the rainbow path for those 

pairs of vertices is contained in one of those cases. Since 𝑟𝑐(𝑂2(𝑛)) ≤ 3𝑛 and 𝑟𝑐(𝑂2(𝑛)) ≥ 3𝑛, then 

𝑟𝑐(𝑂2(𝑛)) = 3𝑛.                             ∎ 

The coloring of graph 𝑂2(𝑛) can be seen in Figure 7. 

 

(a) 

 

(b) 

Figure 7. (a) Graph 𝑂2(1); (b) Graph 𝑂2(3). 

Theorem 3. For any 𝑛 ≥ 1, 

𝑟𝑐(𝑂2′(𝑛)) = {
3,                        𝑓𝑜𝑟 𝑛 = 1,
3𝑛 − 1,             𝑓𝑜𝑟 𝑛 ≥ 2.

 

Proof.  
Graph 𝑂2′(𝑛) has a vertex-set: 
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𝑉(𝑂2′(𝑛)) = {𝑣𝑗
𝑖|1 ≤ 𝑖 ≤ 𝑛, 𝑗 = 1,2,3,4,5}, 

and edge-set 

𝐸(𝑂2′(𝑛)) =  {𝑣1
𝑖𝑣3
𝑖 , 𝑣2

𝑖𝑣3
𝑖 , 𝑣4

𝑖𝑣3
𝑖 , 𝑣5

𝑖𝑣3
𝑖 , 𝑣4

𝑖𝑣5
𝑖  |1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣2

𝑖𝑣1
𝑖+1, 𝑣5

𝑖𝑣4
𝑖+1|1 ≤ 𝑖 ≤ 𝑛 − 1}. 

Then the number of vertices is |𝑉(𝑂2′(𝑛))| = 5𝑛 and the number of edges is |𝐸(𝑂2′(𝑛))| = 7𝑛 − 2. 

It is clear that 𝑂2′(1) ≅ 𝑂2(1) ≅  𝑂2 and 𝑟𝑐(𝑂2′(1)) = 𝑟𝑐(𝑂2(1)) =  2. So, we now consider for        
𝑛 ≥ 2. We divided it into two cases.  

Case 1. For 𝑛 = 2. 

First, we prove the lower bound for 𝑟𝑐(𝑂2′(2)). Since the 𝑑𝑖𝑎𝑚 (𝑂2′(2)) = 5, based on Theorem 

1 in section 1 we have 𝑟𝑐(𝑂2′(2)) ≥ 5. Next, we will determine the upper bound for 𝑂2′(2). Let 𝑐 be 

any edge coloring of the graph 𝑂2′(2).  

Define the edge coloring 𝑐: 𝐸(𝑂2′(2)) → {1,2,3,4,5} as follows.  

𝑐(𝑒) = {

1,                                   𝑖𝑓 𝑒 = 𝑣1
1𝑣3

1 

2,                                    𝑖𝑓 𝑒 = 𝑣2
1𝑣3

1

3,             𝑖𝑓 𝑒 = 𝑣3
1𝑣4

1; 𝑣3
1𝑣5

1; 𝑣4
1𝑣5

1

, 

and   

𝑐(𝑒) =

{
 
 

 
 2,        𝑖𝑓 𝑒 = 𝑣1

2𝑣3
2; 𝑣4

2𝑣5
2 

3,                     𝑖𝑓 𝑒 = 𝑣3
2𝑣4

2

4,         𝑖𝑓 𝑒 = 𝑣2
1𝑣1

2; 𝑣5
1𝑣4

2

5, 𝑖𝑓 𝑒 = 𝑣2
2𝑣3

2; 𝑣3
2𝑣5

2

. 

It will be shown that for each pair of vertices on 𝑂2′(2), there is a rainbow path.  

• For the pair of vertices 𝑣1
1 to 𝑣2

2, the rainbow path is 𝑣1
1 − 𝑣3

1 − 𝑣2
1 − 𝑣1

2 − 𝑣3
2 − 𝑣2

2. 

• For the pair of vertices 𝑣1
1 to 𝑣4

2, the rainbow path is 𝑣1
1 − 𝑣3

1 − 𝑣5
1 − 𝑣4

2. 

• For the pair of vertices 𝑣1
1 to 𝑣5

2, the rainbow path is 𝑣1
1 − 𝑣3

1 − 𝑣2
1 − 𝑣1

2 − 𝑣3
2 − 𝑣5

2. 

• For the pair of vertices 𝑣2
1 to 𝑣4

2, the rainbow path is 𝑣2
1 − 𝑣1

2 − 𝑣3
2 − 𝑣4

2. 

• For the pair of vertices 𝑣4
1 to 𝑣1

2, the rainbow path is 𝑣4
1 − 𝑣3

1 − 𝑣2
1 − 𝑣1

2. 

• For the pair of vertices 𝑣4
1 to 𝑣2

2, the rainbow path is 𝑣4
1 − 𝑣5

1 − 𝑣4
2 − 𝑣3

2 − 𝑣2
2. 

• For the pair of vertices 𝑣4
1 to 𝑣5

2, the rainbow path is 𝑣4
1 − 𝑣5

1 − 𝑣4
2 − 𝑣5

2. 

• For the pair of vertices 𝑣5
1 to 𝑣1

2, the rainbow path is 𝑣5
1 − 𝑣4

2 − 𝑣3
2 − 𝑣1

2. 
For other pairs of vertices not explicitly mentioned in the cases above, the rainbow path for those 

pairs of vertices is contained one of those cases. Because 𝑟𝑐 (𝑂2
′(2)) ≤ 5  and 𝑟𝑐(𝑂2′(2)) ≥ 5, it can 

be concluded that 𝑟𝑐 (𝑂2
′(2)) = 5. 
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Case 2. For 𝑛 ≥ 3. 

First, we will prove the lower bound for 𝑟𝑐(𝑂2′(𝑛)). Since the 𝑑𝑖𝑎𝑚(𝑂2′(𝑛)) = 3𝑛 − 1 based on 

Theorem 1.1 in section 1 we have 𝑟𝑐(𝑂2′(𝑛)) ≥ 3𝑛 − 1. Next, we will determine the upper bound for 

𝑂2′(𝑛). Let 𝑐 be any edge coloring of the graph 𝑂2′(𝑛).  

Define the edge coloring 𝑐: 𝐸(𝑂2′(𝑛)) → {1,2,… ,3𝑛 − 1} as follows.  

𝑐(𝑒) = {

1,                                                     𝑖𝑓 𝑒 = 𝑣1
1𝑣3

1 

2,                               𝑖𝑓 𝑒 = 𝑣2
1𝑣3

1, 𝑣1
2𝑣3

2, 𝑣4
2𝑣5

2

3,                   𝑖𝑓 𝑒 = 𝑣3
1𝑣4

1, 𝑣3
1𝑣5

1, 𝑣4
1𝑣5

1, 𝑣3
2𝑣4

2 

, 

and 

𝑐(𝑒) = {

 
4,         𝑖𝑓 𝑒 = 𝑣2

1𝑣1
2; 𝑣5

1𝑣4
2

5,        𝑖𝑓 𝑒 = 𝑣2
2𝑣3

2; 𝑣3
2𝑣5

2
, 

and for every 3 ≤ 𝑖 ≤ 𝑛,  

𝑐(𝑒) =

{
 
 

 
 3𝑖 − 4,                            𝑖𝑓 𝑒 = 𝑣3

𝑖𝑣4
𝑖  

3𝑖 − 3,          𝑖𝑓 𝑒 = 𝑣2
𝑖−1𝑣1

𝑖 , 𝑣5
𝑖−1𝑣4

𝑖

3𝑖 − 2,                 𝑖𝑓 𝑒 = 𝑣1
𝑖𝑣3
𝑖 ; 𝑣4

𝑖𝑣5
𝑖

3𝑖 − 1,                 𝑖𝑓 𝑒 = 𝑣2
𝑖𝑣3
𝑖 ; 𝑣3

𝑖𝑣5
𝑖

. 

It will be shown that for each pair of vertices on 𝑂2′(𝑛), there is a rainbow path.  

• For the pair of vertices 𝑣1
3 to 𝑣2

𝑛, the rainbow path is 𝑣1
3 − 𝑣3

3 − 𝑣2
3 − 𝑣1

4 − 𝑣3
4 − 𝑣2

4 −⋯− 𝑣2
𝑛. 

• For the pair of vertices 𝑣1
3 to 𝑣4

𝑛, the rainbow path is 𝑣1
3 − 𝑣3

3 − 𝑣5
3 − 𝑣4

4 −⋯− 𝑣4
𝑛. 

• For the pair of vertices 𝑣1
3 to 𝑣5

𝑛, the rainbow path is 𝑣1
3 − 𝑣3

3 − 𝑣2
3 − 𝑣1

4 − 𝑣3
4 − 𝑣5

4 −⋯− 𝑣5
𝑛. 

• For the pair of vertices 𝑣2
3 to 𝑣4

𝑛, the rainbow path is 𝑣2
3−𝑣1

4 − 𝑣3
4 − 𝑣4

4 −⋯− 𝑣4
𝑛. 

• For the pair of vertices 𝑣4
3 to 𝑣1

𝑛, the rainbow path is 𝑣4
3 − 𝑣3

3 − 𝑣2
3 − 𝑣1

4 −⋯− 𝑣1
𝑛. 

• For the pair of vertices 𝑣4
3 to 𝑣2

𝑛, the rainbow path is 𝑣4
3 − 𝑣5

3 − 𝑣4
4 − 𝑣3

4 − 𝑣2
4 −⋯− 𝑣2

𝑛. 

• For the pair of vertices 𝑣4
3 to 𝑣5

𝑛, the rainbow path is 𝑣4
3 − 𝑣5

3 − 𝑣4
4 − 𝑣5

4 −⋯− 𝑣5
𝑛. 

• For the pair of vertices 𝑣5
3 to 𝑣1

𝑛, the rainbow path is 𝑣5
3 − 𝑣4

4 − 𝑣3
4 − 𝑣1

4 −⋯− 𝑣1
𝑛. 

For other pairs of vertices not explicitly mentioned in the cases above, the rainbow path for those 

pairs of vertices is contained in one of those cases. Since 𝑟𝑐(𝑂2′(𝑛)) ≤ 3𝑛 − 1 and 𝑟𝑐(𝑂2′(𝑛)) ≥ 3𝑛 −

1, it can be concluded that 𝑟𝑐(𝑂2′(𝑛)) = 3𝑛 − 1.                          ∎ 

The coloring of graph 𝑂2′(𝑛) can be seen in Figure 8. 
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Figure 8. Graph 𝑂2
′ (4). 

4. DISCUSSIONS 

In this research, we determined the rainbow connection number for two classes of octopus 

iteration graphs: the octopus chain graph 𝑂2(𝑛) for 𝑛 ≥ 1 and the octopus ladder graph 𝑂2
′(𝑛)

 for 𝑛 ≥

2. The results indicate that the rainbow connection number for the octopus chain graph is 3𝑛, where 

𝑛 , which represent the number of iterations (copies) of the octopus graphs 𝑂2. This means that to 

achieve a rainbow connection in the octopus chain graph, at least 3𝑛 distinct colors are required to 

color the edges. For the octopus ladder graph, the rainbow connection number is slightly different. It 

is 3𝑛 − 1 for 𝑛 = 1 and 3𝑛 for 𝑛 ≥ 2. This suggests that the octopus ladder graph requires fewer colors 

to achieve a rainbow connection than the octopus chain graph, for 𝑛 ≥ 2.  Based on the Definition 1 

and Definition 2, it is known that 𝑑𝑖𝑎𝑚(𝑂2(𝑛)) = 𝑑𝑖𝑎𝑚(𝑂2
′ (𝑛)) = 3𝑛 − 1, for 𝑛 ≥ 2. The rainbow 

connection number of the octopus ladder graph is more than its diameter. This case also occurs in 

several classes of graphs, including cycle graphs 𝐶𝑛 for odd 𝑛 ≥ 5, wheel graphs 𝑊𝑛 for 𝑛 ≥ 7 [2] and 

fan graphs 𝐹𝑛 for 𝑛 ≥ 7 [14], planter graphs 𝑅𝑛 for even 𝑛 ≥ 2 and the octopus graph 𝑂2 [9], sandat 

graph 𝑆𝑡(𝑛), for 𝑛 ≥ 3 [15]. Unlike the octopus chain graph, the octopus ladder graph has a rainbow 

connection number equal to its diameter. This case also occurs in several classes of graphs, including 

complete graphs 𝐾𝑛, cycle graphs 𝐶𝑛 for odd 𝑛 ≥ 4, and wheel graphs 𝑊𝑛 for 4 ≤ 𝑛 ≤ 6 [2], fan graphs 

𝐹𝑛 for 3 ≤ 𝑛 ≤ 6 [14], origami graphs 𝑂𝑛, for 𝑛 ≥ 3 [16], and triangular snake graphs 𝑇𝑛, for 𝑛 ≥ 2 

[17]. From the results of this research and several previous researches, it can be seen that graphs with 

the same diameter and similar structure (even in the same graph class) can have different rainbow 

connection numbers. 

5. CONCLUSSION 

In the results and discussion above, it can be concluded that the rainbow connection number of 
octopus chain graph 𝑂2(𝑛) for 𝑛 ≥ 1, while the rainbow connection number in the octopus ladder 
graph 𝑂2′(𝑛) for 𝑛 ≥ 2 is equal to the diameter. The results for the rainbow connection number of 
the octopus chain graph 𝑂2(𝑛) and octopus ladder graph 𝑂2′(𝑛) are as follows: 

1. Rainbow connection number of the octopus chain graphs (𝑂2(𝑛)) 

𝑟𝑐(𝑂2(𝑛)) = 3𝑛, for 𝑛 ≥ 1. 

2. Rainbow connection number of octopus ladder graphs (𝑂2′(𝑛)) 
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𝑟𝑐(𝑂2′(𝑛)) = {
3,                        𝑓𝑜𝑟 𝑛 = 1
3𝑛 − 1,             𝑓𝑜𝑟 𝑛 ≥ 2

. 

In this research, we study rainbow connection number of two classes of octopus iteration graphs, 
namely the octopus chain graph and the octopus ladder graph constructed from an octopus graph 𝑂2. 
Determination of rainbow connection number of graphs constructed from the octopus graphs 𝑂𝑚 for 
𝑚 ≥ 3 still an open problem. 
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