
InPrime: Indonesian Journal of Pure and Applied Mathematics
Vol. 7, No. 1 (2025), pp. 1 – 15, doi: 10.15408/inprime.v7i1.41025
p-ISSN 2686-5335, e-ISSN: 2716-2478

*) Corresponding author
Submitted August 22nd, 2024, Revised February 19th, 2025,
Accepted for publication February 24th, 2025, Published Online February 27th, 2025
©2025 The Author(s). This is an open-access article under CC-BY-SA license (https://creativecommons.org/licence/by-sa/4.0/)

Muhammad Irfa’issurur1 and Bony Parulian Josaphat2*

1Badan Pusat Statistik Kabupaten Pasaman, West Sumatra, Indonesia
2Department of Statistical Computing, Politeknik Statistika STIS, Jakarta, Indonesia

Email: *bonyp@stis.ac.id

Abstract
Security is a top priority in system development, as web portals serve as critical entry points that are

frequently targeted by cyber-attacks. Common attack methods include SQL Injection, Cross-Site

Scripting (XSS), and Brute Force. The application of machine learning in cybersecurity is growing due

to its effectiveness in detecting such threats. This study employs supervised machine learning with six

algorithms: K-Nearest Neighbors (KNN), Random Forest, Naïve Bayes, AdaBoost, LightGBM, and

XGBoost. The research utilizes the CICIDS2017 and CSE-CICIDS2018 datasets, which contain

network traffic data labeled with four categories: Benign, Brute Force, XSS, and SQL Injection. To

address the dataset imbalance issue, this study applies Synthetic Minority Oversampling Technique

(SMOTE) in conjunction with Principal Component Analysis (PCA) for dimensionality reduction.

Performance evaluation is conducted using accuracy, precision, recall, and F1-score metrics, as well as

K-Fold Cross Validation, AUC-ROC, and Learning Curve analysis. The results indicate that the

Random Forest algorithm achieves the highest classification performance, with an accuracy of 97.77%,

precision of 84.07%, recall of 91.96%, and an F1-score of 87.28%. This research contributes by

demonstrating the applicability of machine learning in real-time web attack detection, highlighting the

advantages of ensemble-based models in handling cybersecurity threats. Additionally, it underscores

the importance of dataset preprocessing techniques in enhancing classification performance. Future

improvements should focus on optimizing hyperparameters, integrating real-time network traffic

analysis, and exploring hybrid models that combine traditional machine learning with deep learning

approaches to further enhance detection capabilities.

Keywords: Machine learning; Cybersecurity; Web attack detection; Random forest; SMOTE; PCA.

Abstrak

Keamanan merupakan prioritas utama dalam pengembangan sistem, karena portal web berfungsi sebagai titik masuk

penting yang sering menjadi sasaran serangan siber. Metode serangan umum meliputi SQL Injection, Cross-Site

Scripting (XSS), dan Brute Force. Penerapan machine learning dalam keamanan siber semakin berkembang karena

efektivitasnya dalam mendeteksi ancaman tersebut. Studi ini menggunakan supervised machine learning dengan enam

algoritma: K-Nearest Neighbors (KNN), Random Forest, Naïve Bayes, AdaBoost, LightGBM, dan

XGBoost. Penelitian ini memanfaatkan kumpulan data CICIDS2017 dan CSE-CICIDS2018, yang berisi data

lalu lintas jaringan yang diberi label dengan empat kategori: Benign, Brute Force, XSS, dan SQL Injection. Untuk

mengatasi masalah ketidakseimbangan kumpulan data, studi ini menerapkan Synthetic Minority Oversampling

Technique (SMOTE) bersama dengan Principal Component Analysis (PCA) untuk pengurangan

dimensionalitas. Evaluasi kinerja dilakukan dengan menggunakan metrik akurasi, presisi, recall, dan skor F1, serta

K-Fold Cross Validation, AUC-ROC, dan analisis Learning Curve. Hasilnya menunjukkan bahwa algoritma

Random Forest mencapai kinerja klasifikasi tertinggi, dengan akurasi 97,77%, presisi 84,07%, recall 91,96%, dan

skor F1 87,28%. Penelitian ini berkontribusi dengan menunjukkan penerapan machine learning dalam deteksi serangan

https://creativecommons.org/licence/by-sa/4.0/
mailto:bonyp@stis.ac.id

Muhammad Irfa’issurur and Bony Parulian Josaphat

2 | InPrime: Indonesian Journal of Pure and Applied Mathematics

web real-time, menyoroti keunggulan model berbasis ensemble dalam menangani ancaman keamanan siber. Selain itu,

penelitian ini menggarisbawahi pentingnya teknik praproses dataset dalam meningkatkan kinerja klasifikasi.

Peningkatan di masa mendatang harus difokuskan pada pengoptimalan hiperparameter, pengintegrasian analisis lalu

lintas jaringan real-time, dan eksplorasi model hybrid yang menggabungkan machine learning tradisional dengan

pendekatan deep learning untuk lebih meningkatkan kemampuan deteksi.

Kata Kunci: Pembelajaran mesin; Keamanan siber; Deteksi serangan web; Random forest; SMOTE; PCA.

2020MSC: 68T05

1. INTRODUCTION

As the internet continues evolving, the web has become the primary portal for users to access

public and private information through browsers. The increasing use of web application systems has

led to potential security vulnerabilities that can be exploited by attacks such as SQL Injection, XSS,

and Brute Force [1,2,3]. System security is a top priority in protecting data, necessitating methods

capable of detecting various cyber-attacks [4].

Machine learning is widely used in data analysis because it can create models that can predict

values by learning patterns from data. As a branch of artificial intelligence, machine learning algorithms

can understand the normal behavior patterns of users and systems and detect suspicious behavior or

activities [5]. This enables security systems to quickly detect attacks, even before they reach a damaging

stage. Machine learning can assist humans in performing large-scale attack detection analyses rapidly,

which would be impossible to do manually. Implementing machine learning in web security provides

real-time automation in monitoring network behavior [6]. This allows continuous, uninterrupted

monitoring to protect systems from any attack.

As cyber threats become more sophisticated, the application of machine learning is a promising
step in detecting ever-evolving and increasingly complex cyberattacks [7]. This study classifies web
attack data (Brute Force, XSS, SQL Injection) using six selected algorithms: KNN, Naïve Bayes,
Random Forest, AdaBoost, LightGBM, and XGBoost.

Much research has been conducted in detecting cyber-attacks because maintaining data security
is crucial to avoiding cyber-attacks. Previous studies, such as the work by Sharafaldin et al. (2018),
have generated reliable intrusion detection datasets like CICIDS2017, which were designed to address
the limitations of older datasets such as DARPA98 and KDD99 [8]. CICIDS2017 covers many
modern attacks, including SQL Injection, Brute Force, and XSS, offering a realistic representation of
network traffic and attack patterns. While prior works have utilized machine learning for web attack
detection, most have focused on a limited set of models, often neglecting the impact of data imbalance
on performance.

This study differentiates itself by employing six machine learning algorithms—K-Nearest

Neighbors (KNN), Naïve Bayes, Random Forest, AdaBoost, LightGBM, and XGBoost—on the

CICIDS2017 and CSE-CICIDS2018 datasets. To improve classification accuracy, we incorporate

Synthetic Minority Oversampling Technique (SMOTE) to address dataset imbalance and Principal

Component Analysis (PCA) for dimensionality reduction.

This research's key contribution lies in its more comprehensive application of machine learning

techniques, with special attention given to the data imbalance problem that can affect model

Machine Learning for Cybersecurity: Web Attack Detection (Brute Force, XSS, SQL Injection)

3 | InPrime: Indonesian Journal of Pure and Applied Mathematics

performance. This study enhances real-time web attack detection using techniques like SMOTE [9]

and PCA [10], offering a potential foundation for developing more robust cybersecurity systems.

The main objective of this study is to develop a machine learning model that can effectively
classify network traffic into benign and web attack classes (Brute Force, XSS, SQL Injection). The
study aims to identify which machine learning algorithm is the most effective in achieving this
classification. Using the CICIDS2017 and CSE-CICIDS2018 datasets, containing four labeled
classes—Benign, Brute Force, XSS, and SQL Injection—provides a strong foundation for training
and evaluating the models. By achieving these objectives, this study contributes to developing robust
machine learning models for web attack detection and offers insights into how machine learning can
be better applied to address the evolving challenges in cybersecurity.

2. METHODS

2.1. Machine Learning Algorithms
a. K-Nearest Neighbor

K-Nearest Neighbor (KNN) is a non-parametric algorithm used for regression and classification.
KNN is also a lazy learning algorithm, meaning it does not use training data points to create a
model[11]. The KNN algorithm classifies data based on the characteristics of its neighbors by
calculating the proximity distance between the k closest data points using Euclidean, Manhattan,
Hamming, or Minkowski distances. The workflow of the KNN algorithm can be summarized as
follows [12].

Figure 1. K-Nearest Neighbor Classifiation [12].

Given point 𝑥 is the target to be classified. Define the set of the 𝑘 nearest neighbors of 𝑥 as 𝑆𝑥.
Formally 𝑆𝑥 is defined as 𝑆𝑥 ⊆ 𝐷 s.t. |𝑆𝑥| = 𝑘 and ∀(𝑥′, 𝑦′) ∈ 𝐷/𝑆𝑥 [13],

 𝑑𝑖𝑠𝑡(𝑥, 𝑥′) ≥ max
(𝑥",𝑦")∈𝑆𝑥

𝑑𝑖𝑠𝑡(𝑥, 𝑥"). (1)

We can then define the classifier ℎ() as a function returning the most common label in 𝑆𝑥:

ℎ(𝑥) = 𝑚𝑜𝑑𝑒({𝑦 ∶ (𝑥", 𝑦") ∈ 𝑆𝑥}).
(2)

The k-nearest neighbor classifier fundamentally relies on a distance metric. The better that metric
reflects label similarity, the better the classification. The most common choice is the Minkowski
distance.

𝑑𝑖𝑠𝑡(𝑥, 𝑧) = (∑ |𝑥𝑟 − 𝑧𝑟|𝑝𝑑
𝑟=1)

1

𝑝.
(3)

b. Random Forest
The Random Forest algorithm combines multiple decision trees using the bagging method [14].

This involves creating various subsets of the training data randomly, which are then used to train the

Muhammad Irfa’issurur and Bony Parulian Josaphat

4 | InPrime: Indonesian Journal of Pure and Applied Mathematics

machine learning model. The classification process in Random Forest is done by voting on each

decision tree and then combining the results to select the class with the most votes. Random Forest

is an ensemble learning method that constructs multiple decision trees and aggregates their outputs

through majority voting [14]. We use the following hyperparameters: n_estimators = 100, max_depth

= None, min_samples_split = 2, bootstrap = True, and criterion = ‘gini’.

c. Naïve Bayes
Naive Bayes is a very popular classification method in machine learning. Naive Bayes applies

Bayes' theorem and the strong assumption that each feature is conditionally independent given the
target class. Although this assumption is often violated in practice, the method can still compete with
others regarding accuracy [15]. Naive Bayes is also referred to as a conditional probability model,
which can be described as follows [16].

 𝑃(𝐶𝑘|𝑥) =
𝑃(𝐶𝑘)𝑃(𝑥|𝐶𝑘)

𝑃(𝑥)
,

(4)

where 𝑃(𝐶𝑘|𝑥) is posterior probability i.e. the probability of class 𝐶𝑘 given the observed data 𝑥, 𝑃(𝐶𝑘)
is prior probability i.e. the probability of class 𝐶𝑘 before observing any data. It represents our initial
belief about the class distribution, 𝑃(𝑥|𝐶𝑘) is likelihood i.e. the probability of observing the data xxx
given that it belongs to class 𝐶𝑘, 𝑃(𝑥) is evidence (marginal likelihood) i.e. the overall probability of
observing 𝑥, considering all possible classes. This equation can be written as

 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑝𝑟𝑖𝑜𝑟×𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
. (5)

The class decision is determined by the highest posterior probability as follows:

 �̂� = argmax
𝑘𝜖{1,…,𝐾}

𝑃(𝐶𝑘) ∏ 𝑃(𝑥𝑖|𝐶𝑘)𝑛
𝑖=1 . (6)

Naïve Bayes assumes independence among features and applies Bayes’ theorem for classification [15].

The Gaussian Naïve Bayes model is used, as our dataset contains continuous numerical features. The

key parameter in this model is var_smoothing = 1e-9, which prevents zero probability issues by adding

a small value to variance calculations.

d. AdaBoost
Adaptive Boosting, or AdaBoost, is an ensemble algorithm that applies the boosting technique in

machine learning by reweighting each misclassified data point. AdaBoost works by repeatedly training

multiple weak learners, such as decision trees, over a specified number of iterations until the model

becomes stronger [17].

According to [18], first assign the initial weights to the data by giving each data point a weight

𝑤𝑖
𝑡 = 𝐷(𝑖) = 1 𝑁⁄ , where 𝑖 indicates the position of the 𝑖th data point, and 𝑡 indicates the iteration. The

weight distribution is given by
 𝑝𝑡 =

𝑤𝑡

∑ 𝑤𝑖
𝑡𝑁

𝑖=1

. (7)

Apply the weak learner with the associated weighting 𝑝𝑡 and then calculate the error of the weak learner

with

 ℎ𝑡 ∶ 𝜀𝑡 = ∑ 𝑝𝑖
𝑡|ℎ𝑖(𝑥𝑖) − 𝑦𝑖|𝑁

𝑖=1 , (8)

Machine Learning for Cybersecurity: Web Attack Detection (Brute Force, XSS, SQL Injection)

5 | InPrime: Indonesian Journal of Pure and Applied Mathematics

where |ℎ𝑖(𝑥𝑖) − 𝑦𝑖| is a function that takes a value of 0 or 1. Calculate 𝛼𝑡, which represents the strength

of the weak learner. It is given by 𝛽𝑡 = 𝜀𝑡/(1 − 𝜀𝑡) and 𝛼𝑡 =
1

2
log (

1

𝛽𝑡
). Next is to update the weights.

Misclassified data points receive a larger weight 𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 × 𝑒𝛼𝑡 while correctly classified data points

receive a smaller weight 𝑤𝑖
𝑡+1∗

= 𝑤𝑖
𝑡 × 𝑒−𝛼𝑡. Output hypothesis given by

ℎ𝑓(𝑥) = {

1, 𝑖𝑓 ∑ (log
1

𝛽𝑡
) ℎ𝑡(𝑥)𝑇

𝑡=1 ≥
1

2
∑ log

1

𝛽𝑡
 𝑇

𝑡=1 ,

0, elsewhere.
.

(9)

The base estimator for this study is Decision Tree (max_depth=1) to ensure weak learners, as

AdaBoost relies on sequential improvements. Other parameters include n_estimators = 20 and

learning_rate = 1.0.

e. LightGBM
LightGBM is a machine learning algorithm Microsoft developed based on decision trees using

gradient boosting. It implements the Gradient Boosting Decision Tree (GBDT), popular in the

machine learning community. However, GBDT has faced various challenges in handling high-

dimensional and large-scale data because, for each feature, GBDT needs to scan all the data to estimate

the information gained from all potential split points. To address these issues, Ke, Guolin, et al. [19].

proposed two techniques: Gradient-based One-Side Sampling (GOSS) and Exclusive Feature

Bundling (EFB). Key hyperparameters include num_leaves = 31, max_depth = -1, learning_rate =

0.01, boosting_type = ‘gbdt’, and feature_fraction = 1.

f. XGBoost
XGBoost is an implementation of Gradient Boosting Decision Tree (GBDT) that is highly

popular in the machine learning community [20]. The algorithm begins by initializing the prediction
using log-odds or logit [21]:
 �̂�𝑖

(0)
=

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 = 𝑝, (10)

 logit(𝑝) = log (
1

1−𝑝
), (11)

where �̂�𝑖
(0)

 is the initial predicted value for the 𝑖-th instance before boosting starts, 𝑛 is the total number

of training samples, 𝑦𝑖 is the actual label (ground truth) of the iii-th training sample, 𝑝 is the average
of the labels, which represents the initial probability estimate (prior probability) of the positive class,
and logit(𝑝) is the log-odds transformation of the probability 𝑝.

Then, it proceeds with the Gradient Boosting iterations, where the gradient and hessian are

calculated using the previous iteration’s predicted probabilities

• Gradient

𝑔𝑖
(𝑡)

=
𝜕𝐿(𝑦𝑖,�̂�𝑖

(𝑡−1)
)

𝜕�̂�
𝑖
(𝑡−1) = �̂�𝑖

(𝑡−1)
− 𝑦𝑖.

(12)

• Hessian

ℎ𝑖
(𝑡)

=
𝜕2𝐿(𝑦𝑖,�̂�𝑖

(𝑡−1)
)

𝜕�̂�
𝑖
(𝑡−1)2 = �̂�𝑖

(𝑡−1)
(1 − �̂�𝑖

(𝑡−1)
),

(13)

where �̂�𝑖
(𝑡−1)

 represents the predicted probability at iteration (𝑡 − 1)th and

Muhammad Irfa’issurur and Bony Parulian Josaphat

6 | InPrime: Indonesian Journal of Pure and Applied Mathematics

 �̂�𝑖
(𝑡−1)

=
1

1+exp(−�̂�
𝑖
(𝑡−1)

)
. (14)

Following this, a new model (typically a decision tree) fit. The predictions are then updated to compute
the branch values in the decision tree

𝑤𝑗 = −
∑ 𝑔𝑖𝑖𝜖𝐼𝑗

∑ ℎ𝑖+𝜆𝑖𝜖𝐼𝑗

,
(15)

and the predicted values �̂�𝑖
𝑡 are further adjusted with the learning rate 𝜂.

 �̂�𝑖
𝑡 = �̂�𝑖

(𝑡−1)
+ 𝜂 ∙ 𝑤𝑗. (16)

These steps are repeated for a set number of iterations, during which the gradients and Hessians are

recalculated, a new tree is fit, and the predictions are updated accordingly. The parameters used are

n_estimators = 100, max_depth = 4, learning_rate = 0.1, subsample = 1, colsample_bytree = 1, and

gamma = 0.

2.2. Nunamaker and Chen

The system is developed using the Nunamaker and Chen system development method [22], as
shown in Figure 2. According to Figure 2, this method consists of five iterative stages: creating a
conceptual framework, designing the system architecture, system analysis and design, building a
prototype, and system evaluation.

Figure 2. Nunamaker and Chen system development research process [23].

a. Construct a conceptual framework

At this stage, the foundational structure of the research is outlined. It defines the core
components of the study, such as the dataset, machine learning models, and evaluation methods. This
framework provides an overarching view of the research, explaining the key elements involved and
how they interact with the research process. In essence, it is a theoretical design that outlines how the
study will proceed conceptually, as shown in Figure 3.
b. Develop a system architecture

The System Architecture goes further by detailing how the framework is implemented practically.
At this stage, an architectural diagram shows the specific processing steps involved. It explains how
the system is structured technically, outlining the stages of data collection, preprocessing, model
training, and evaluation. Unlike the Conceptual Framework, which focuses on the big-picture design,
the System Architecture focuses more on the system's technical structure and practical
implementation, as shown in Figure 4.

Machine Learning for Cybersecurity: Web Attack Detection (Brute Force, XSS, SQL Injection)

7 | InPrime: Indonesian Journal of Pure and Applied Mathematics

Figure 3. Conceptual framework.

Figure 4. System architecture.

c. Analyze and design the system

This section outlines the preparation steps before implementing the system, including data
collection, analysis, preprocessing, splitting, model training, and model evaluation, as shown in
Figure 5.
d. Build the system

The system design that has been created is then implemented at this stage.
e. Observe and evaluate the system.

After implementation, the model is evaluated using cross-validation, an AUC-ROC curve, a
learning curve, and a classification report. The following outlines the process of building the machine
learning model based on the predefined system design.

The datasets used in this study are sourced from the University of New Brunswick, Canadian

Institute for Cybersecurity, namely CICIDS2017 [8] and CSE-CICIDS2018 [24]. The dataset used in

this research combines CICIDS2017 and CSE-CICIDS2018 (Attack labeled). This dataset consists of

Muhammad Irfa’issurur and Bony Parulian Josaphat

8 | InPrime: Indonesian Journal of Pure and Applied Mathematics

77 attributes/variables, one attack label attribute, and 171,159 rows of data. The label attribute has

four types: Benign, Brute Force, XSS, and SQL Injection.

Figure 5. Flowchart of developing a machine learning model.

Research Stages:

1. Preprocessing data
The obtained dataset is then subjected to data preprocessing, where it is prepared before modeling
according to the analysis requirements. The processes involved include adjusting variable names,
removing duplicate attributes, encoding data, checking missing values, applying PCA (Principal
Component Analysis) to reduce dimensions, and employing SMOTE (Synthetic Minority
Oversampling Technique) to address data imbalance. After completion, the dataset will be divided
into class X (77 attributes/variables) and class Y (attack labels).

2. Splitting data
At this stage, the dataset will be divided into training and testing, with a ratio of 90% for training
data and 10% for testing data.

3. Classifying data
At this stage, classification will be conducted using the predetermined machine learning algorithms:
KNN, Naïve Bayes, Random Forest, AdaBoost, LightGBM, and XGBoost.

4. Evaluating
Evaluating machine learning models is crucial for determining their performance and effectiveness
in detecting cyber-attacks. The primary goal of model evaluation is to measure how well a model
performs in classifying or predicting data based on specific metrics. The following metrics are used
to assess the models applied in this research comprehensively:
a) Classification Report

The classification report is a document that presents evaluation metrics of the classification
model's performance against target classes. It typically includes the confusion matrix,
precision, recall, F1-score, and support. These evaluation metrics allow us to understand a

Machine Learning for Cybersecurity: Web Attack Detection (Brute Force, XSS, SQL Injection)

9 | InPrime: Indonesian Journal of Pure and Applied Mathematics

model's accuracy and reliability in real-world scenarios. In cybersecurity, where detecting
attacks is critical, measuring precision, recall, and other metrics ensures that the model is
theoretically sound and practically useful.

b) K-Fold Cross Validation
K-Fold Cross Validation is a technique that divides the dataset into k random parts, using k-1
parts for training and one part for testing, then repeating this process k times. The accuracy
results from k repetitions are averaged to produce a single estimation. Through techniques like
cross-validation, we can detect whether a model is overfitting (too closely tuned to the training
data) or underfitting (failing to capture important patterns in the data). Overfitting leads to
poor generalization, which is dangerous in cybersecurity when models encounter new, unseen
threats.

c) AUC-ROC
AUC-ROC (Area Under the Curve—Receiver Operating Characteristics) is a measurement
technique used to determine how well a model can distinguish classes at various threshold
settings. The higher the AUC level, the better the model predicts different classes. We plot the
ROC curve and calculate TPR (True Positive Rate) and FPR (False Positive Rate).

d) Learning Curve
The learning curve is a graph that compares a model's performance for training and testing
with different numbers of training objects, thereby indicating whether the model can learn
from the data as the training data increases.

Utilizing appropriate evaluation techniques—such as classification reports, cross-validation, AUC-
ROC, and learning curves—ensures that machine learning models are effective, reliable, and
scalable for real-world cybersecurity applications. These methods provide valuable insights into the
model’s strengths and limitations, facilitating the selection and refinement of the best-performing
models.

5. RESULTS

Figure 6 illustrates the distribution of web attack label types to assess data balance. The figure

shows the imbalance in data points across different types of web attacks. Further processing is

performed to achieve data balance.

Figure 6. Web attack labeled data.

Muhammad Irfa’issurur and Bony Parulian Josaphat

10 | InPrime: Indonesian Journal of Pure and Applied Mathematics

1. Preprocessing data
The process consists of three steps: (1) removing null values, NaN values, and duplicate columns,

(2) applying PCA for dimensionality reduction, as shown in Figure 7, where seven principal

components are identified to achieve 99% cumulative variance, and (3) using SMOTE to balance the

dataset, generating 20,000 instances per attack type, excluding the original data.

2. Splitting data
After data preprocessing, the dataset is split into two parts: 90% for training, consisting of benign

data and SMOTE-resampled web attack data, and 10% for testing, which includes both benign and
web attack data (see Figure 8).

Figure 7. The PCA’s Result. Figure 8. Splitting data: training and testing.

3. Training model
At this stage, six machine learning algorithms are applied to the training data to develop a web

attack classification model.

4. Evaluating
In the evaluation stage, the model's performance and accuracy are assessed using predefined

methods, with the results displayed for comparison. Table 1 presents the classification report.

Table 1. Classification report

No Algorithm Accuracy Precision Recall F1-score

1. KNN 96.96% 80.72% 89.29% 84.17%

2. Random Forest 97.77% 84.07% 91.96% 87.28%

3. Naïve Bayes 17.40% 28.76% 33.32% 12.22%

4. Adaboost 88.99% 57.83% 65.29% 53.70%

5. LightGBM 94.68% 69.72% 84.01% 64.41%

6. XGBoost 94.79% 70.37% 85.15% 73.56%

Based on Table 1, models such as Random Forest and KNN achieved high precision, recall, and
F1 scores above 80%, demonstrating their ability to balance false positives and false negatives, making
them well-suited for real-world attack detection. In contrast, Naïve Bayes showed poor performance,
with low precision (28.76%) and an F1-score of 12.22%, indicating a high false positive rate and
reduced reliability for attack detection. Meanwhile, LightGBM and XGBoost delivered consistently
strong performance with high precision and recall, highlighting the effectiveness of boosting
algorithms in handling imbalanced data. This suggests boosting models like LightGBM and XGBoost

Machine Learning for Cybersecurity: Web Attack Detection (Brute Force, XSS, SQL Injection)

11 | InPrime: Indonesian Journal of Pure and Applied Mathematics

are more resilient to data imbalance than probabilistic methods such as Naïve Bayes. Other boosting
algorithms, such as AdaBoost, exhibited lower performance than LightGBM and XGBoost,
underscoring the importance of parameter tuning to optimize boosting model performance.

Table 2 presents the results of K-Fold Cross Validation using 𝑘 = 10. Based on the table, Random

Forest and KNN models demonstrate consistent performance across almost every fold, with minimal

accuracy variation (96–97%). This stability indicates that these models effectively learn from different

data subsets and are not overly sensitive to data splits. In contrast, Naïve Bayes consistently yielded

low accuracy (~17%) across all folds, suggesting underfitting. This implies that the model lacks the

complexity to capture underlying data patterns, potentially due to its feature independence

assumption, which may not align with real-world data. Boosting algorithms like XGBoost and

LightGBM performed well, with average accuracies exceeding 94% and 88%, respectively. However,

both exhibited slight fluctuations across folds, highlighting the need for hyperparameter tuning to

ensure optimal and stable performance. Meanwhile, AdaBoost showed greater accuracy variability

(84–89%) than other algorithms, indicating potential sensitivity to outliers or noise. Significant

fluctuations in K-Fold results may suggest that the model lacks generalization or is highly sensitive to

data variations.

Table 2. K-Fold Cross Validation

No KNN
Random
Forest

Naïve
Bayes

AdaBoost LightGBM XGBoost

1. 97.07% 97.70% 17.60% 84.59% 89.01% 94.77%

2. 97.08% 97.78% 17.36% 88.91% 89.03% 94.89%

3. 96.96% 97.75% 17.40% 84.74% 88.89% 94.68%

4. 97.07% 97.84% 16.74% 84.84% 89.04% 94.88%

5. 97.01% 97.81% 16.75% 88.92% 89.03% 94.92%

6. 97.12% 97.78% 16.88% 84.64% 88.83% 94.71%

7. 96.95% 97.67% 16.98% 88.47% 88.86% 94.74%

8. 96.98% 97.77% 17.25% 88.79% 88.91% 94.85%

9. 96.95% 97.66% 17.62% 88.78% 88.78% 94.62%

10. 96.96% 97.77% 17.40% 88.99% 88.99% 94.79%

Average 97.02% 97.75% 17.20% 87.17% 88.94% 94.78%

Figure 9 presents the AUC-ROC results. As shown in Figure 9, models using ensemble algorithms

such as Random Forest, XGBoost, and LightGBM achieve AUC values close to 1, indicating excellent

discriminatory capability. This suggests that these models effectively differentiate between malicious

and normal traffic. In contrast, Naïve Bayes may exhibit an AUC close to 0.5, reflecting poor

performance. This suggests that Naïve Bayes struggles with datasets containing feature dependencies,

reinforcing the importance of selecting a model suited to the data characteristics.

Additionally, models using the AdaBoost algorithm may show lower or more variable AUC values

across experiments. Since boosting algorithms can be sensitive to outliers, extensive tuning is often

required. This sensitivity may lead to higher false positive rates at certain thresholds, particularly in

noisy datasets.

Muhammad Irfa’issurur and Bony Parulian Josaphat

12 | InPrime: Indonesian Journal of Pure and Applied Mathematics

Figure 9. The AUC-ROC result.

Figure 10. Learning Curves.

Models with a learning curve that consistently improves as more data is added are less likely to

experience underfitting, and their performance can benefit from additional data. Figure 10 presents

the Learning Curve results. Based on the figure, KNN, Random Forest, XGBoost, and LightGBM

Machine Learning for Cybersecurity: Web Attack Detection (Brute Force, XSS, SQL Injection)

13 | InPrime: Indonesian Journal of Pure and Applied Mathematics

exhibit strong learning curves, with the testing performance steadily improving as training data

increases. This indicates that ensemble methods possess good generalization capabilities, even with

larger datasets. Underfitting is evident when the training and testing curves remain low, as seen in

Naïve Bayes. This suggests that the model is too simplistic to capture complex data patterns.

Conversely, AdaBoost may be prone to overfitting, especially if not properly tuned or if the dataset

contains noise.

5. DISCUSSION

This study evaluated the application of machine learning algorithms for detecting web attacks,

such as Brute Force, XSS, and SQL Injection, demonstrating these techniques' potential in

cybersecurity. The evaluation result shows the effectiveness of these methods, particularly the Random

Forest algorithm. The main strength of this study is the use of relevant datasets, CICIDS2017 and

CSE-CICIDS2018, which provide a realistic representation of network traffic and attack patterns [8].

The imbalanced nature of the original datasets necessitates the use of balancing techniques such

as SMOTE oversampling, which may introduce synthetic bias [9]. The large number of features can

be a curse of dimensionality, which makes it challenging to perform analysis, so it is necessary to

transform or simplify the data using certain methods such as PCA [10]. Our results are consistent with

related research by Sharafaldin et al. [8], which demonstrated the superiority of ensemble methods in

intrusion detection tasks. However, our implementation using LightGBM and XGBoost also showed

significant performance [25] , suggesting that boosting algorithms can be an alternative to traditional

techniques such as Random Forest. This indicates a potential avenue for enhancing detection abilities.

The evaluation of the models, using techniques like K-Fold Cross Validation, showed that both
Random Forest and KNN were stable, with only minor fluctuations in accuracy across different data
subsets. On the other hand, boosting models like XGBoost and LightGBM performed well overall
but exhibited slight variations, suggesting that more fine-tuning of their hyperparameters could
improve their reliability.

One limitation of this study is the use of static datasets, which may not fully represent emerging
attack patterns in dynamic cybersecurity environments. So, future research could explore integrating
real-time network traffic data and advanced feature engineering techniques to improve model
adaptability. Moreover, combining deep learning with traditional machine learning models in hybrid
approaches could further boost detection accuracy.

Overall, this study illuminates how machine learning can enhance web attack detection, providing
valuable insights into the balance between model complexity, interpretability, and performance in real-
world cybersecurity scenarios [25].

6. CONCLUSIONS

This study used six different algorithms to explore the application of machine learning algorithms

for detecting web attacks, such as Brute Force, XSS, and SQL Injection. The results demonstrate that

models like Random Forest and KNN performed best, offering high accuracy and robustness in real-

time web attack detection. However, some limitations must be acknowledged. The datasets utilized—

CICIDS2017 and CSE-CICIDS2018—present an imbalance between benign and attack instances.

Although SMOTE was applied for oversampling, creating synthetic data may introduce bias and not

Muhammad Irfa’issurur and Bony Parulian Josaphat

14 | InPrime: Indonesian Journal of Pure and Applied Mathematics

fully represent real-world scenarios, potentially reducing model effectiveness when deployed in

naturally imbalanced environments. Additionally, while this study concentrated on specific algorithms,

the model's performance is influenced by parameter settings that were not thoroughly optimized.

More in-depth hyperparameter tuning could further enhance model precision and reliability.

Moreover, the features used in this study were based on predefined network attributes, which may

restrict the model's adaptability to evolving threats. Future research could focus on dynamic feature

extraction and real-time data collection for continuous model improvement. By addressing these

limitations, future work can strengthen the applicability and reliability of machine learning models in

cybersecurity, especially in managing diverse and evolving cyber threats.

ACKNOWLEDGMENT

This research was not funded by any grant.

REFERENCES

[1] Z. Liu, Y. Fang, C. Huang, and Y. Xu, “MFXSS: An effective XSS vulnerability detection
method in JavaScript based on multi-feature model,” Comput. Secur., vol. 124, p. 103015, 2023,
doi: https://doi.org/10.1016/j.cose.2022.103015.

[2] A. Buja, “An Online SQL Vulnerablility Assessment Tool and It’s Impact on SMEs,” Int. J.
Adv. Res. Comput. Sci., vol. 13, no. 5, pp. 23–28, 2022, doi: 10.26483/ijarcs.v13i5.6903.

[3] M. M. Najafabadi, T. M. Khoshgoftaar, C. Kemp, N. Seliya, and R. Zuech, “Machine Learning
for Detecting Brute Force Attacks at the Network Level,” in 2014 IEEE International Conference
on Bioinformatics and Bioengineering, 2014, pp. 379–385. doi: 10.1109/BIBE.2014.73.

[4] A. Priandoyo, “Vulnerability Assessment untuk Meningkatkan Kesadaran Pentingnya
Keamanan Informasi,” J. Sist. Inf., vol. 1, no. 2, pp. 73–83, 2006.

[5] R. Moskovitch, Y. Elovici, and L. Rokach, “Detection of unknown computer worms based on
behavioral classification of the host,” Comput. Stat. Data Anal., vol. 52, no. 9, pp. 4544–4566,
2008, doi: 10.1016/j.csda.2008.01.028.

[6] S. Vijayakumar, K. S. P. Gowtham, N. Nigam, and R. V. R. Singh, “An Novel Approach in
Designing a Security Workbench with Deep Learning Capabilities and Process Automation,”
IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2019-Octob, pp. 263–268, 2019, doi:
10.1109/TENCON.2019.8929691.

[7] C. Virmani, T. Choudhary, A. Pillai, and M. Rani, “Applications of machine learning in cyber
security,” Res. Anthol. Mach. Learn. Tech. Methods, Appl., pp. 621–641, 2022, doi: 10.4018/978-
1-6684-6291-1.ch033.

[8] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward Generating a New Intrusion
Detection Dataset and Intrusion Traffic Characterization,” ICISSP 2018 - Proc. 4th Int. Conf.
Inf. Syst. Secur. Priv., vol. 2018-Janua, no. Cic, pp. 108–116, 2018, doi:
10.5220/0006639801080116.

[9] A. Fernández, S. García, F. Herrera, and N. V. Chawla, “SMOTE for Learning from
Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary,” J. Artif. Intell.
Res., vol. 61, pp. 863–905, 2018, doi: 10.1613/jair.1.11192.

[10] T. Kurita, “Principal component analysis (PCA),” in Computer vision: a reference guide, Springer,
2021, pp. 1013–1016.

Machine Learning for Cybersecurity: Web Attack Detection (Brute Force, XSS, SQL Injection)

15 | InPrime: Indonesian Journal of Pure and Applied Mathematics

[11] LP2M Universitas Medan Area, “Algoritma K-Nearest Neighbors (KNN) – Pengertian dan
Penerapan,” 2016. https://lp2m.uma.ac.id/2023/02/16/algoritma-k-nearest-neighbors-knn-
pengertian-dan-penerapan/ (accessed May 28, 2024).

[12] Cornell University, “Lecture 2: k-nearest neighbors.”
https://www.cs.cornell.edu/courses/cs4780/2017sp/lectures/lecturenote02_kNN.html#:~:
text=The k-NN algorithm&text=Formally Sx is defined,furthest point in Sx). (accessed Aug.
11, 2024).

[13] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inf. Theory, vol.
13, no. 1, pp. 21–27, 1967, doi: 10.1109/TIT.1967.1053964.

[14] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001, doi:
10.1023/A:1010933404324.

[15] G. I. Webb, E. Keogh, and R. Miikkulainen, “Naive Bayes,” Encycl. Mach. Learn., vol. 15, no.
1, pp. 713–714, 2010.

[16] M. Murty and V. Devi, Pattern recognition. An algorithmic approach. 2011. doi: 10.1007/978-0-
85729-495-1.

[17] R. E. Schapire, “The strength of weak learnability,” Mach. Learn., vol. 5, no. 2, pp. 197–227,
1990, doi: 10.1007/BF00116037.

[18] Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization of On-Line Learning and
an Application to Boosting,” J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139, 1997, doi:
https://doi.org/10.1006/jcss.1997.1504.

[19] G. Ke et al., “LightGBM: A Highly Efficient Gradient Boosting Decision Tree,” in Advances in
Neural Information Processing Systems, 2017, vol. 30. [Online]. Available:
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb
6b76fa-Paper.pdf

[20] J. Friedman, “Greedy Function Approximation: A Gradient Boosting Machine,” Ann. Stat.,
vol. 29, 2000, doi: 10.1214/aos/1013203451.

[21] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” Proc. ACM SIGKDD
Int. Conf. Knowl. Discov. Data Min., vol. 13-17-Augu, pp. 785–794, 2016, doi:
10.1145/2939672.2939785.

[22] J. F. Nunamaker, M. Chen, and T. D. M. Purdin, “Systems Development in Information
Systems Research,” J. Manag. Inf. Syst., vol. 7, no. 3, pp. 89–106, Feb. 1990, [Online]. Available:
http://www.jstor.org/stable/40397957

[23] J. Anderberg and N. Fathullah, “A machine learning approach to enhance the privacy of
customers,” 2019.

[24] “A Realistic Cyber Defense Dataset (CSE-CIC-IDS2018).” https://registry.opendata.aws/cse-
cic-ids2018 (accessed Feb. 21, 2024).

[25] R. Gunawan, Erik Suanda Handika, and Edi Ismanto, “Pendekatan Machine Learning Dengan
Menggunakan Algoritma Xgboost (Extreme Gradient Boosting) Untuk Peningkatan Kinerja
Klasifikasi Serangan Syn,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 3, pp. 453–463,
2022, doi: 10.37859/coscitech.v3i3.4356.

