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Abstract

In this papet, we study the propetties of a special (a, §)-metric ek1§ +p ek2§, the Randers change of
the generalized exponential metric. We find the necessary and sufficient condition for this metric to be
locally projectively flat and we also prove the conditions for this metric to be of the Berwald and Douglas
type.
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Abstrak

Pada artikel ini akan dipelajari sifat-sifat khusus dari (a, f)-metric eklg +p ek2§, pernbahan Randers dari
metrik eksponensial umum. Kami menemnkan syarat perlu dan cukup agar metrik ini menjadi datar secara lokal dan
kami juga membnktikan syarat agar metrik ini bertipe Berwald dan Douglas.

Kata Kunci: Ruang Berwald; Ruang Douglas; Ruang Finsler; (a, B)-metric; Projectively flat.

2020MSC: 53B20.

1. INTRODUCTION

Graph In 1972, M. Matsumoto [1] [2] introduced the notion of the (a, f)-metric on the basis of

the Randers metric. There are several types of (a, f)-metrics, such as the Randers metric a +  [3],
2 m+1
Kropina metric % [1] [4], generalized Kropina metric aBm

[4]. In these metrics, a(x,y) = (a;; (x)yiyj)l/Z is a Riemannian metric and B(x,y) = b;(x)y" is a

(m # 0,—1) [5] and Matsumoto metric
a2
a=p
differential one form [6].

In 2013, G. Shanker and Ravindra [7] introduced a special (a,f)-metric aef/® + B and
considered it a Randers change in the exponential metric. Now, we generalize this concept by
introducing an (a, f)-metric

F(a,B) = e s + ﬁekzg, (1)

where k; and k, are some constants and are referred to as the Randers changes of the generalized
exponential metric.

In this paper, we have studied the properties of this (@, f)- metric, identified the necessary and
sufficient conditions for the metric to be locally projectively flat and determined the conditions for
this metric to be of the Berwald and Douglas type. A deep study of the projectively flat Finsler metric
was also carried out by authors [5] [8] [9] [10] [11] [12] and [13].
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2. PRELIMINARIES

Let a = (a; (x)yiyj)l/z be a Riemannian metric, § = b;y’ be a 1-form and F = a¢(s), where
s = g, ¢ = ¢(s) be a positive C” function defined in a neighborhood of the origin s = 0. Since we

know that F = a (£) is a Finsler metric for any @ and § with b = § llu< by iff

P(s) > 0,¢(s) —s¢'(s) + (b? = s?)9" (s) > 0, (Is| < b < by).
Replacing b by s, we obtain

P(s) —sd'(s) > 0,(|s| < by).
Let G* and G¢ denote the spray coefficients of F and @ respectively, defined as

il

. il .
G = Z{[F?) ey = [F?) e}, Gl = - {[@?] ey = [a?] .}

where g;; = %[Fz]yiyj and

9
(ai) = (a;) " Fpue = ak,Fyk=a—yFk.

For an (a, f)-metric L(a, f8), the space R" = (M™, a) is known as the Riemannian space associated
with the Finsler space F™* = (M™, L(a, f)). The covariant differentiation with respect to the Levi-Civita
connection y]-ik (x) of R™ is denoted by (; ). Now, we have the following [14]:

Lemma 2.1. The spray coefficients G are related to G by

G' = GL + aQs} + J(=2aQsqy + 150) y;l + H(=2aQsq + 1o0) {bi - y;l}’ @)
where
__9
==
J= (=5t}
2¢((p-s¢")+(b2-s2)9"")
_ ¢II
H= S G=senror=sne
. T 1
wherte s;9 = 53", 5o = S10b", 700 = vyl i = E(bi:j + bj:i)'sij = ( ) =al Mo S

a’sj,r = b1 ,s; = brsjr,bi = a'"b, and b? = a™ b, bg. It is Well—known that [15] a Finsler metric
F = F(x,y) on an open subset U € R" is projectively flat if and only if

xkylyk — F,i=0. 3

By equation (3), we have the following lemma [9].
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Lemma 2.2. An (@, )-metric F = a¢p(s), where s = g, is projectively flat on an open subset U ©
R™ if and only if

(@m1@? — YmYDGI + a®Qsyo + Ha(~2aQso + 100) (b — 1) = 0. )

The functions G'(x,y) of F™ with an (a, 8)-metric can be written in the form [16]

2G' = yi, + 2Bt (5)
Bizoi_?sé+C*{%yi_%a(§yi_%bi)}. ©)
provided B2 + Ly + ay?Lgq # 0, where y2 = b%2a? — B2, L, = g—i,LB = g—;,Laa = a%, and sy=s/y’.
Now we put
cr = apB(roola—2asoLg)

2(B2Lg+ay?Laq)

We denote the homogeneous polynomials in (y*) of degree 1 by hp(r) for brevity. For example

Y&o is hp(2). From equation (), the Berwald connection BT = ( e G, 0) of F™ with an (a, B)-metric
is given by [10]

Gi=0;G' = y{; + B

Gjlk= aijL = y]lk + B}k,

where B} = 6,-Bi and B}k = akB}. According to [10], B}k are determined by

LoBfyye + aLg(Bfibe — bj; )y’ =0, @

where y, = ayy'. A Finsler space F™ with an (@, f)-metric is a Douglas space if and only if BY =
B'yJ — bJy' is hp(3) [17]. From equation (6), BY can be written as follows:

L. L .. P ZL(l(l " .. PR
BY =L (sby! = sgy') + 2= (b'y — bIy). ®)
3. RESULTS AND DISCUSSION

3.1. Projectively flat (a, B)-metric

B B D .
In this context, we consider the metric F = ae*'a + Be*?a which is obtained by the Randers

change of the generalized exponential metric
- — (ek k .y
F =ag(s), ¢(s) = (eF15 + sek2s),s = pe )

Let by > 0 be the largest number satisfying
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P(s) —s¢'(s) + (b —sH)¢" (s) > 0,(Is| < b < by),

that is,
ek1S(1 — sky + b%k? — s2k?) + e*25(b%sk2 — s?k,+2bk, — s3k% — 2k,52) > 0,(|s| < b < by).
B B
Lemma 3.1. F = ae*i« + Be*?a is a Finsler metric, iff | B llo< 1.

Proof.

B g . .
If F = ae®ta + [)’ekza is a Finsler metric, then

ek1S(1 — sky + b%k? — s2k?) + e*25(b2%sk? — s2k,+2bk, — s3k% — 2k,s2) > 0,(|s| < b < by).

Lets = b, then we obtain b < 1,Vb < by. Let b — by, then by < 1. Therefore || B ll,< 1. Now, if |s| <
b < 1 then

ek1S(1 — sky + b%2k? — s2k?) + e*25(b%sk? — s2k,+2bk, — s3k% — 2k,s?) = e*15(1 — sky) +
ek2$(2bk, — 3k,s%) >0 (since b? —s? > 0).

B B .
Thus F = ae*'« + Be’?a is a Finsler metric. By Lemma (2.1), the spray coefficients G* of F are written
by equation (2) as

_ kie¥1s + k,sek2s + ekas B

"~ ek1s — k sek1s — k,s2ek2S’ ST e

(1 = sky)kye®15 + {(1 — sky)sk, + (1 — sky) — s2kiky}e*1+K2)S — 52k, (1 + sky)e?*2®

— 2(ek1s + sek2S){[(1 — sky) + (b2 — s2)ky]ek1s + [(b2 — s2)k3s + 2b%k, — 352k, |ek25}
kZek1s + k2sek2s + 2k, ek2s

{[(1 = sky) + (b% — s2)kq]ek1s + [(b% — s2)k3s + 2b2%k, — 352k, ]|ek25}

)

H=
2

Then equation (4) is reduced to the following form:

( 5 )Gm 4 o kief1s + k,sek2s + gkaS 4
Ama~ — a S
ml YmY1)bg ekis — klsekls _ kzszekzs 1o

a(kZek15+rZsekas 12k, ek29) 2 (kye*15 +kpse2s +ek25)
2{[(1—sk1)+(b2—-s2)k,]ek15+[(b2—s2)kZs+2b2k, 352k, |ek25}) (ek1S—kysek15—k,s2ek2s)

So + Tgo| X

(bja —sy;) =0,s = E (10)

a

Now we use the following result [18]:

Lemma 3.2. If (a;a% — yy) G = 0, then @ is projectively flat.

Proof.
If (@ @® — Y y)) G = 0, then we have
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azamngcn = YmG&nYI-

Hence, if there is an 1 = 1(x,y) such that y,,G* = a?n, we find
UG’ = NY1- an
Contracting equation (11) with a® yields G; = ny, and hence a is projectively flat.

B B
Theotem 3.3. The (@, B)-metric F = ae’*a + Be*?a is locally projectively flat iff f is parallel with
respect to & and & is locally projectively flat, i.e., of constant curvature.

Proof.

Suppose, that F is locally projectively flat. First, we rewrite equation (10) as a polynomial in y fand a,
then we obtain

B 8
{(=2a2B[(1 + ky) + b2 + 283k, }e" a(ama? — vy )G + (2 ab + 2b2a® — 2a*B?) |k e*ta +
] B B B
(1+k52) ekZE] 510 —(2a*s, [kleklE +(1+k5) ekZE] — a?BeMiary,) (ba? — By} + a{(2a? +
] ] B B
2b%a?)e e (ama? — yy)GI —2a*p [kleklE + (1 + k, 5) ekZE] S + a?earg (ba® — By) —
2 kzﬁ 2 —
koBrooe 2a(bja” — By;)} = 0,
or U +aV =0, (12)
where
B
U ={=2a2B[(1 + ky) + b2] + 283k, }e" a(apma® — ymy )G + (2 ab + 2b%a® — 2a*B2) x

[kleklg + (1 + k, b ﬁ) ekzg] + “Zﬁeklgroo)(blaz - By}

—) ekzg] s — (Qats [k eklg + <1 + ky—
a 10 0 1 2a

and
B B B
V =2a%(1 + b?)e"a(ama® — ymy) G —2a*p [klekla + (1 + k; g) ekzZ] Sio t+
2,k B 2 ko2 2
(a“era—f ke 2a) roo(ba” — Byy).

Now, equation (12) is a polynomial in y¢, such that U and V are rational in y* and « is irrational.
Therefore, we must have U = 0 and V = 0 which implies that

(202611 +Ie) + b?] + 2670, Je s (amua® = )G =250 [ke 5+ (14 ky £) €75 4 a2petimyy )
(bia? — By) —(2 a® + 2b%a® — 2a*B?) [kleklg + (1 +k, S) ekzg] S10, 13)
and
2 2\ fa 2 m 4 e AW
20°(1 + b?)e ta(ama® — ymy) Gyt — 2a* [kle ta + (1 +k, E) e Zu] Si0 —

B B
(a?ef1a—p2kye"2a) 1o (b1 — Byy), (14)
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respectively. Contracting equations (13) and (3.6) with b!, we have
B
(=201 + by + b + 28Ky Je @ (bna® = Y BI G
B B B
= —2a’s, [kleklﬁ + (1 + k, g) ekZE] + a?Berary,(b2a? — B2)
B
20%(1 + b2)e“ a(bya? — Y f)GI
— 9% 2 BY kot 2kl oy kE 2,2 2
= 2a* B (kye e + (14 k,2) "% |5y — (a2e"a—pPhye*a)ro(b2a® = ) (15)
2\ K B 2
2(1+b%)ea(bma® — ymPB)Gq"
B B B B
= 207 f [lne" + (14 ko £) 47 g — (e 1= kpee ) oo (b7 = 57) (16)
Multiplying equation (16) by @? and adding the result obtained to equation (15), we get
B B
B|2ki(=a? + B (b = ym)e 5GE — kofProgea(b?a? - 62|

B B
= 2a*(—a? + B?) [kle"la +(1+k,5) e"zz] So (17)

. 4 2 2 k B B k B]. .o . oL
The polynomial 2a*(—a* + ) [kle ta + (1 + k, Z) e Za] is not divisible by  and f is not divisible
by

B B
2a*(—a? + B?) [klek15 + (1 + k, g) esz].

. L. 2 2 2 k2 2 k,2 2.2 2\1 ;
Thus S is divisible by f and [2k;(—a® + B*)(bpa® — ymBle taGyt — k,°1g0e 2a(b*a® — B2)] is
B B
divisible by 2a*(—a? + B?) [klekla + (1 +k, g) ekza]. Hence, there exist scalar functions T =
7(x), x = x(x) such that

So = TP, (18)

B B
2ky (—a® + ) (bm@® = ymf)e G — kyf*Tooe™*a(b?a” — §2)
B B

= X{Za“’(—az + B?) [klekla + (1 + k, g) ekza]}. (19)
Then, equation (17) reduces to

B B B B

Bx {2(14(_“2 + B [kle"la + (1 +k, %) e"zz]} = 2a*(—a* + B?) [kle"la + (1 +k, g) ekZE] B.
Thus T = y. Hence, equation (15) becomes
20t (—a? 2 k2 B\ kN2 2 3 27 _

x{2at(—a? + B2) [kye"a + (1 + k&) €| { {~2a2B[1 + ky + ] + 283k + 2k; fa?} =

{(2a2[3[1 +ky + b2 — 253k1)k232e"2§ + azﬁeklg(—az + ﬁZ)Zkl}rOO(bz 2_B?).  (20)
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Since (b%a? — $?) is not divisible by

{2a4(—a2+/3’2)

B B
{(20{2[?[1+k1+b2]—2B3k1)kzﬁzek23+a2ﬂekl&(—a2+ﬂ2)2k1}

B B
k1e"15+(1+kzﬁ)e"25]}{—2a2/3[1+k1+b2]+2/33k1+2k1/3“2}

a

5

it follows from (20) that y = 0. By (18), (19) and (20), we get

So = 0, (21)
Too = 0, (22)

B B
and 2k (—a? + B2)(bna? — ymPB)e aGI — kyf2rope e (b2a? — p2) = 0.
Using equation (22) in the above equation, we obtain
2 2
(bpa® — ympBle eGP = 0. (23)
Substituting equations(22) and (23) into (14), we find
S;0 = 0. (24)

Using equation (23) and lemma (3.2), givesar is projectively flat. Using equations (22) and (24),we
getb;;; = 0. i.e, B is parallel with respect to a. Conversely, if f is parallel with respect to @ and a is
locally projectively flat, then by Lemma (2.2), we can easily see that F is locally projectively flat.

3.2. Berwald and Douglas Spaces

In this part, we find the condition that a Finsler space F™ withthe (&, 8)-metric (9) is a Berwald
space. In n-dimensional Finsler space F™ with the (&, f)-metric (9), we have

(a—k B)e"16 k2 kP B
L= CTBENE iy oo (14 1,E),

_1 k1ﬁ)2 klﬁ _k12 klé k; (2“+k23) kzﬁ
Laa= = (CE)" eM1a, Lgy = L e¥ra + 22 (22220 oo

(25)

Substituting (25) in (7), we find
B . B . B B B .
aeklEBjtinyt — kyBe"1a Ly ye + {az (klek15 + ekZE) + Bakzekzﬁ} (Bfibe — by;)y’ = 0. (26)

' Let F™ be a Berwald space, i.c., Gjik = Gjik (x). Then we obtain Bfi = Bfi (x). Since « is irrational in
(¥'), hence from equation (26), we can write

eklgB-t-yjy =0 (27)
Ji t 5

B , B B B ,
—kipetaByly, +{a? (kue'a + %) + akoea) (Bib, — by)y/=0. @Y
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Using equations (27) and (28), we obtain

, B B B ,
Bf;y’y: = 0 and {az (kle'“E + ek23> + ﬁakzekzﬁ} (Bfl-bt — b))yl =0,

which gives Bjtl-ath + Bf,a, i =0, B]-tibt — bj;; = 0. Thus, by the well known Christoffel process we find
Bj; = 0. Therefore we have:

Theorem 4.1. The Randers change of the generalized exponential metric (9) provides a Berwald
metric if and only if b;,; = 0, and then the Berwald connection is Riemannian ()/jik, v j» 0).

Now, we consider the condition for a Finsler space F™ with the(a, §)-metric (9) to be a Douglas
space. Substituting equation (25) intoequation (2.7), we get

B .
2(a — klﬁ)ekla[az —kyap + (b%a® - ﬁz)klz]BU
B B . P
—2a [akle’“z +(a+ ﬂkz)e"zz] [a? = kyaB + (b2a? — Bk, *|(shy! — s3¥") 29)
2 k1E k1£ kzﬁ ir,J Ja i) —

—kia?{(a — kyp)e" aryg — 2as, |ak e e + (a + Bky)e %« |t (b'y/ — biy') = 0.
Let F™ be a Douglas space, i.c.,.BYare hp(3). Separating equation (29) in rational and irrational terms
of y*, because « is irrational in (yi), we find

B ..
[(—4k1a2[>’ + 2k, ® B3 — 2k, *b?a?B)e 1aBY

+ (akleklg + aekzg + Ekzek2§> (—2a3 — 2k, *b2a® + 2k, 2ap?) (sby’ — sly")
+k12a2[3ek1§r00(biyj — blyY) + 2kya3s, (akleklg + aekzg + ,Bkzekzg) (biyl — bjyi)] (30)
+a [eklgBif(Zaz + 2k, *b%a?) + 2k,ap (akleklg + aekzg + ﬁkzekzg) (sby’ — s({yi)
—klazeklgroo(biyj — bjyi)] =0.

Hence equation (30) is divided into the following two equations:

B ..
[(—4k1a2ﬁ + 2k, 3B — 2k, *b2a?B)e"1aBY
B B B . s
+ (akleklE + ae®?a + ,Bkzek25> (—2a3 — 2k, *b%a® + 2k, *aff?) (sby’ — siy?)
WB B B BN S
+ky2a?fetargy (bly) — biyt) + 2k ads, (akle e + ae"?a + Bkye 25) (biy) — bfy‘)] =0,

and
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B B B B\, . . i
e*1aBY(2a® + 2k,*b%a?) + 2k.ap (akleklﬁ + ae?a + ﬁkzekzﬁ) (séy? —spyt) —
B .. A
kya?e*targy (biy) — biyt) = 0. (32)
Eliminating BY from equations (31) and (32), we obtain
A(s(i)yj — s({y") + B(biyj — bjyi) =0, (33)
where
A =2a(-2a* — 4k,*b?a* + 6k *a?B? — 2k, *b*a* + 4k, *b2a?p? — 2k, " B*) x
1B . ik (34
(akle la + ae™a + Bkye Za),

B B B B
B = 2a[k; 2ae aryy(B3s? — a?B) + 2kya*(1 + ki 2b?) (akle"lz + aeka + ﬁkze"za) so. (35)
Transvecting (33) by b;y;, we have

Asya? + B(b%a? — p?) = 0. (36)

The term of the equation (36) which does not contain « 2 is —B57y,. Hence there exists hp(5): vs such
that

—ky*B100 = V. 37)

Now, we consider the following two cases:

® Vs =0,

(ii) Vs # 0, @? # 0(modp).

Case (1). When Vg = 0, this leads to 159 = 0. Therefore, substituting 759 = 0 in equation (306), we find

so(A+y?B;) =0, (38)
where

B B B
By = 2k;a?(1 + k;°b?) (aklekla + ae*2a + ﬁkzekza).

If A+ y?B; = 0, then the term A + ¥?B; = 0 which does not contain a? is —48*. Thus there exists
hp(2):V, such that

_k14ﬁ4 = anz.

Hence we have V, = 0, which leads to a contradiction. Therefore, A + y?B; # 0. Hence, we get sg =
0 from (38). Substituting so = 0 and 159 = 0 into (33), we obtain

A(sby’ = sjy') = 0. (39)
If A = 0, then from equation (34), we obtain

2a(—2a* — 4k,*b%a* + 6k *a?p? — 2k, *bra* + 4k, *b2a?p? — 2k, ) x
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B B B
(akle"la + aea + ﬁkze"zz) 0,

or

(—2a* — 4k, *b2a* + 6k, *a?B? — 2k, *b*a* + 4k, *b2a?p? — 2k, *p*) X
kL k2 k2 _
akie ra + ae™?a+ Lkyea ) = 0. (40)

The term of the equation (40) which does not contain @? is —48*. Thus, there exists hp(2): V, such
that

—2k,*B* = a?V,,

from which we get V, = 0. This is a contradiction, therefore, A # 0. Hence, from equation (39) we get
séy) — Sgyi = 0. Now, transvecting the above equation by y;we get Sé = 0, which implies 5;; = 0.
Consequently, we find r;; = s;; = 0, i.e., b;;; = 0.
Case (ii). The equation (37) shows that there exists a function k = k(x) such that rpy = k(x)a?.

Thus, equation (36) which does not contain a? is included in the term —f°7y,. Hence we get
Too = 0. From equation (39), we get A(s(i,yj - S({ yi) =0.If A = 0, then it is a contradiction. Hence
A # 0. Therefore, we obtain s§y’ — Sg y'=0. Again, transvecting this equation by y; we get s§=0.
Hence, in both the cases (i) and (ii) we have r;; = 0 and s;; = 0, i.e., b;;; = 0. Conversely if b;,;; = 0,
then F™ is a Berwald space, so F™ is a Douglas space. Thus we have the following:

Theorem 4.2. The Randers_change of the generalized exponential metric (9) is of the Douglas type if
and only if @ # 0(modp) and b;;; = 0.

From Theorem 4.1 and Theorem 4.2, we have

Theorem 4.3. If the Randers change inthe generalized exponential metric (9) is of the Douglas type,
then it is Berwaldian.

4. CONCLUSION

In this way we obtain the results of Randers change of the generalized Exponential metric in
terms of constants kq and k,. By putting the different values for kqand k,we can find different results
for their respective values.
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